

autoSIM-200
The shortest way to

automation

USER MANUAL

 User manual

autoSIM3 3 ©Copyright 2011 SMC

Installation

If you are installing AUTOSIM from the AUTOSIM CD-ROM, place it in
your CD-ROM drive.

The installation is launched automatically.

If this does not occur, launch the “Setup.exe” executable which is in the
CD-ROM root.

Configuration required
PC compatible computer, with:
- WINDOWS 98 SE or WINDOWS ME or WINDOWS 2000 or
WINDOWS XP or WINDOWS 7 or WINDOWS 2003 or WINDOWS
VISTA operating system,
- 256 MB memory (depending on the operating system: the operating
system itself may require more memory),
- graphics board with a resolution of at least 1024 x 768 in 65536 colors.

Installation in a network
AUTOSIM can be installed in a network environment.

Execute the installation procedure on the “server” PC (make sure you
have all of the access rights when you carry out the procedure).

To launch AUTOSIM, on the client PCs, create a shortcut to the
“autom8.exe” executable of the AUTOSIM installation directory on the
server PC.

Refer to the chapter “additional information on installing AUTOSIM in a
network environment” for more information about installing AUTOSIM
and licenses in a network environment.

 User manual

autoSIM3 4 ©Copyright 2011 SMC

New features of AUTOSIM3

Increased integration of the Grafcet 60848 standard
The new elements of this standard can now be accessed in the
contextual program editing menus.

Compatibility of files
The files generated by all of the AUTOSIM3 versions can be re-read by
all of the AUTOSIM3 versions.

Physical engine integrated to IRIS3D
The TOKAMAK motor is integrated to IRIS3D. This enables an extremely
realistic simulation of the 3D operational units to be obtained.

Enhanced 3D object handling in IRIS3D
The saving and re-reading of objects and behaviors allows you to
manage libraries of easily reusable objects. Predefined objects
(cylinders, conveyor belts, etc) are proposed as standard. A 3D
operational unit simulation application can now be created in just a
couple of mouse clicks.

Improved links between AUTOSIM and IRIS3D objects
Enhanced modes allow you to easily handle displacements of complex
objects between AUTOSIM and IRIS3D. An AUTOSIM variable can, for
example, give the speed of an object directly. Position reporting can also
be simulated in the manner of an absolute encoder.

Textured IRIS3D objects
Textured objects now provide IRIS3D with extraordinarily realistic
rendering.

 User manual

autoSIM3 5 ©Copyright 2011 SMC

Drag and drop from IRIS3D to AUTOSIM sheets
A right click on the IRIS3D objects allows you to access the list of
variables and “drag” a reference over to a programming sheet.

SIMULA user-definable object
SIMULA users will appreciate the new user-definable object, which will
allow you to create your own objects.
(See the section of this manual devoted to SIMULA)

Drag and drop from SIMULA to AUTOSIM sheets
A click on the SIMULA objects allows you to “drag” a reference over to a
programming sheet.

Improvements to the environment
Finally, numerous improvements to the environment, such as the
magnifying glass in the design palette, the simplified palettes in
“beginner” mode, or personalizing menus make AUTOSIM even more
user-friendly.

 User manual

autoSIM3 6 ©Copyright 2011 SMC

Environment

General views

AUTOSIM’s main window in “Expert” mode

The environment is fully customizable. The tool bars can be moved (by

dragging their moving handle) and parameterized (menu
“Tools/Customize the environment”).

The state of the environment is saved when you quit it. This state can
also be saved in a project file (see the project options).

Tool
bars

Message
window

Browser

Tabs

Workspace

 User manual

autoSIM3 7 ©Copyright 2011 SMC

Selecting targets in expert mode

At the bottom of the browser window there is a “Targets” tab, allowing
access to the list of post-processors installed.

The active target is indicated with a red tick. Access
to targets displayed in grey is not authorized for the
license installed (see the “Licenses” chapter for
more details). To change the current target, double-
click on the corresponding line. The targets shown in
this list are the ones selected at installation time. If
the target you want to use is not shown in this list,
re-launch the AUTOSIM installation and install it.

Palettes
At the bottom of the browser window there is a “Palette” tab, allowing
access to program design elements.

The palette gives a set of elements that can be
selected and placed on the sheets. To select an
element, left-click with the mouse in the palette,
expand the selection, release the mouse button,
click in the area selected and move the area
towards the sheet.

The palette also contains the list of symbols for
the project. You can grab them and drag them
onto a test or an action on a sheet.

A magnifying glass is automatically shown when
the elements displayed are small.

 User manual

autoSIM3 8 ©Copyright 2011 SMC

Displaying or hiding the project window or message window
Select the « Project » or « Messages » option from the « Window »
menu.

Displaying the work space in full screen mode
Select the « Full screen » option from the « Display » menu. Click on
to exit full screen mode.

Keyboard shortcuts
Keyboard shortcuts are written in the menus. « Masked » shortcuts can
also be used:

CTRL + ALT + F8 Save the project in executable

format
CTRL + ALT + F9 Save the project
CTRL + ALT + F10 Access project properties
CTRL + ALT + F11 Display or hide AUTOSIM window

Parameters can be set for the entire environment; its state is saved when
you close AUTOSIM. Environment windows can be hidden. The
« Windows » menu is used to display them again. The work space can
be displayed in full screen mode. The tabs at the bottom of the browser
window are used to access selection for the current post-processor and
the graphics palette.

 User manual

autoSIM3 9 ©Copyright 2011 SMC

Licenses
A license establishes AUTOSIM user rights. The following elements are
established by license:

- the number of all or none inputs/outputs that can be used,
- post-processors that can be used,
- the number of users (only for network licenses).

Registering a license
When you install AUTOSIM, you can use it for free for a period of 40
days.

You must register your license within 40 days.

To register your license, send SMC:

- the serial number printed on the label glued to the software box, or
the reference of your delivery note or order form,

- the user code provided with the software indicating the PC where
you have installed the product.

You will then receive an enable code (also called validation code).

The « License » option in the AUTOSIM « File » menu can be used to
display the status of your license and obtain a user code (click on
« Registering the license »).

License status.

 User manual

autoSIM3 10 ©Copyright 2011 SMC

A user code is valid for a period of 10 days.

So a maximum period of 10 days can pass from when you send a user
code to SMC and when you receive an enable code provided by SMC.

Sending a user code to SMC
There are various methods you can use. Exchanging codes by e-mail is
highly recommended as it limits the risk of error.

A single error in the code will prevent the license from being registered.

Sending a file by e-mail (the best solution)

License registration dialogue box

To generate a file containing your user code, click on « Save user code
in a file ». You can then transmit the file with « .a8u » extension as an
attachment and send it to the address training@smctraining.com.

 User manual

autoSIM3 11 ©Copyright 2011 SMC

Copying the user code in an e-mail message
By clicking on « Copy user code to clipboard », you can then paste the
code in the body of the message and transmit it to the e-mail address
training@smctraining.com.

By telephone (highly unadvisable)
By telephoning +34 945 00 10 33. Be sure to differentiate between the
letter « O » and number zero. Be careful of consonants which are difficult
to tell apart on the telephone (for example « S » and « F »).

Entering the validation/enable code

Validating by a e-mail received file
If you have received an « .a8v » file by e-mail, save the file on your hard
disk, click on « Read a validation code from a file » and select the file.

Validating for a code received in the text of an e-mail
Select the code in the message text (make sure you only select the code
and do not add any spaces to the end). Click on « Paste a validation
code from the clipboard ».

Validating for a code received by fax or telephone
Enter the code in the spaces under the title « Validation code ».

Modifying a license
Modification of a license Involves changing the elements authorized by
the license (for example adding a post-processor).
The license modification procedure is identical to registration.

Moving a license from one computer to another
This procedure is more complex. The instructions below must be
scrupulously followed to obtain good results. In the instructions below,
« source » PC indicates the computer with the license and the « target »
PC is the PC where the license needs to be moved.

1- if it has not already been done, install AUTOSIM on the target PC,

 User manual

autoSIM3 12 ©Copyright 2011 SMC

2- generate an « .a8u » user code file on the target PC and move this
file to the source PC (for example on a floppy disk),

3- on the source PC, select the « Move the license to another place »
option,

Dialogue box for moving a license

4- on the source PC, click on « Read a user code from a file » and

select the « .a8u » file that came from the target PC,
5- on the source PC, click on « Move the license »,
6- on the source PC, click on « Save the validation code in a file »,

recopy the generated « .a8v » file to the target PC,
7- on the target PC, click on « Read a validation code from a file »

and select the « .a8v » file that came from the source PC.

Network licenses
The « akey8.exe » executable manages the network license. This
executable must be launched from one of the network computers. The
network must be able to be used with TCP IP protocol. When launched,
the network license manager is hidden and only a icon appears in the
WINDOWS keybar. To display the network license manager window,
double click on the icon in the keybar.

 User manual

autoSIM3 13 ©Copyright 2011 SMC

The network license manager

Up to 16 different licenses can be managed by the network license
manager. A network license is characterized by a number of users and a
type of copyright (number of all or none inputs/outputs and useable post-
processors). For each license the number of possible user/s, number of
connected user/s and list of connected users (using AUTOSIM) is
displayed in a tree format attached to each license. Each license is
associated to a port number (a numeric value starting from 5000 by
default). The first port number used can be configured by clicking on
« Parameters ».

Adding a network license
You can add a license by clicking on « Add a license ». The license
registration principle is the same as for single license versions.

 User manual

autoSIM3 14 ©Copyright 2011 SMC

Modifying a license
Double click on the licenses to modify them. The license modification
procedure is the identical to that used for single license versions.

Connecting to client stations
Click on « Connect to a network license » to connect a client station to a
network license.

Connecting to a network license

The PC name (the one from the network) where the « akey7.exe » was
launched must be provided as well as the port number corresponding to
the desired license.

You must register your license with SMC (training@smctraining.com) by
sending your user code by e-mail (« File/License » menu. The network
license manager is used to manage multiple licenses on TCP IP network
PC's.

 User manual

autoSIM3 15 ©Copyright 2011 SMC

Additional information on installing AUTOSIM in a network
environment

General information

Two aspects of the AUTOSIM8 installation have to be considered:
installing files on the one hand and managing licenses on the other.
These two aspects are completely separate: you can choose to install
the files either on the hard disk of the client PCs or else on a file server
and, completely independently of this, choose to install either a license
locally on a PC or else a network license on a network license manager.

Installing AUTOSIM3 on a file server

Benefit: the AUTOSIM3 files are installed just once on a file server, and
updates are simplified.

Procedure on the file server: install AUTOSIM3. Rights needed: read-
access is sufficient.

Procedure on the client workstations: create a shortcut to the
“autom8.exe” executable, which is in the AUTOSIM3 installation directory
on the file server.

Installing one or more AUTOSIM3 licenses on a network license manager

Benefit: the licenses are no longer restricted to one PC but can be used
by all of the PCs connected to the network (floating licenses).

Principle: one or more licenses are installed on one of the network’s
PCs. A license authorizes from 1 to n users. AUTOSIM3 may be
launched on client PCs upto the maximum number of users. A license
has the same features for all users in terms of the number of
inputs/outputs that can be used and the types of post-processors that
can be used. If several configurations (several types of licenses) are
needed, then as many licenses will be created as there are different

 User manual

autoSIM3 16 ©Copyright 2011 SMC

types of configurations. When AUTOSIM3 is launched on the client PCs,
a connection will be created to one or other of the licenses depending on
the features that are wanted.

Actual example: setting up a network of 4 16 I+16 O PL72 licenses, 4 16
I+16 O PL7 licenses + 2 unlimited I/O PL7 licenses. For this: 3 licenses
will be created on the network license manager: 1 license for 4 16 I+16 O
PL72 users, 1 license for 4 16 I+16 O PL7 users, 1 license for 2 unlimited
I/O PL7 users.

Where to install the network license manager: on one of the network’s
PCs (it does not have to be the server) which must be running all the
time (whenever a user would like to use AUTOSIM3).

Technical constraints: the network must support TCP/IP, the PC where
the network license manager is located must be able to run a WINDOWS
program (application or service).

Installation on the network license manager: on the PC where the
network licenses are going to be managed, install the main AUTOSIM8
module + the network license manager.

Registering one or more licenses on the network license manager:
launch the network license manager: (AKEY8.EXE executable, located in
the AUTOSIM8 installation directory). When launched, the license
manager sets up an icon in the bottom right of the WINDOWS task bar.
Left-click once with the mouse to open the window.

Click on “Add a license” to add a license.

Click on “Save the user code in a file” to generate an .n8u file that you
will e-mail to us at the address “training@smctraining.com ”: we will send
back an .n8v file that you will connect up by clicking on the “Read a
validation code from a file” button.

The licenses installed in this way will then be shown in the network
license manager with the serial number and characteristics of the license
and the associated port number. It is this port number that will allow
clients to connect to a specific license.

Installation on the client workstations: launch AUTOSIM3, and in the “File
/ License” menu select “Connect to a network license”.

 User manual

autoSIM3 17 ©Copyright 2011 SMC

Enter the name of the PC where the network license manager is running
(or its IP address) and the port number (this number makes it possible to
identify the license you want to connect to, if there is more than one).

It is also possible to add an argument in the AUTOSIM3 launch shortcut
in order to force connection to one network license.

The argument is:

/NETLICENSE=<name of the PC where the network license manager is
located>,<port>

Make sure that “NETLICENSE” is correctly spelled: S not C at the end.

For example:

/NETLICENSE=MYSERVER,5001

Several launch shortcuts can be created in order to connect to different
licenses.

Possible problems: if you use a firewall, make sure access is authorized
to the ports used by the network license manager (those displayed in the
network license manager).

Installing the network license manager as a service under WINDOWS
NT, 2000, XP, 2003 and VISTA.

Displaying the status of the licenses remotely: to display the status of the
network license manager on a different PC from the one on which the
network license manager has been launched (or if the “service” version
of the network license manager is being used), use the
“spya8protnet.exe” utility, which is located in the AUTOSIM3 installation
directory.

Installing the network license server as a service

The “NT Service” key server allows the AUTOSIM3 network licenses to
be managed on a WINDOWS NT4, 2000, 2003, XP or VISTA
workstation without opening a session. Unlike the AKEY8.EXE
“executable” version, AKEY8NT.EXE does not allow either the
protections or the connected users to be displayed.

 User manual

autoSIM3 18 ©Copyright 2011 SMC

Before installing the key server as an “NT service”, you are
recommended to make sure that the key server works properly with the
“executable” version: AKEY8.EXE.

Launch the “akey8nt –i” command line to install the NT key server
service. The AKEY8NT.EXE executable is installed in the AUTOSIM
installation directory.

So that the service starts automatically:
- under WINDOWS NT4: in the “Start/Parameters/Configuration

Panel” menu, select the “Services” icon the “AKEY8” line, click on
the start button and select the “Automatic” button.

Reboot your PC so that the key server is activated.

- under WINDOWS 2000, 2003, XP or VISTA: in the

“Start/Parameters/Configuration Panel” menu, select the
“Administrative Tools” icon then the “Services” icon. Right-click with
the mouse on the “AKEY8” line and select “properties”. In the
“Startup Type” option, select “Automatic”. In the “Recovery” tab,
select “Restart the service” in the “First Failure” area.

Uninstallation

Launch the “akey8nt –u” command to uninstall the NT key server
service.

Errors

After having uninstalled the AKEY8NT.EXE service, use AKEY8.EXE to
determine the cause of any malfunctions.

 User manual

autoSIM3 19 ©Copyright 2011 SMC

The project

AUTOSIM3 is strongly based on the idea of a project. A project groups
together the elements that compose an application. The browser
displays all the project elements (sheets, symbols, configuration, IRIS
objects etc.) in a tree format.

The new file format of AUTOSIM3 (files with « .AGN » extension) includes
all project elements.

When you save an « .AGN » file you are assured of saving all the
elements of an application. You can easily and effectively interchange
applications created with AUTOSIM.

« .AGN » files are compacted with « ZIP » technology, they do not need
to be compressed to be interchanged, their size is already optimized.

All the files generated by AUTOSIM3 can be re-read with all of the
versions of AUTOSIM3: upward and downward compatibility.

Files generated with AUTOSIM2
The files created with AUTOSIM7 can be opened directly in AUTOSIM3.

Importing an application from an earlier version of AUTOSIM
(version 2 or earlier)
You need to import all of the sheets (“.GR7” files) and any symbol file
(“.SYM” file). To do this, use the import procedures described in the
following chapters.

Generating a free distribution executable file
The « Generate an executable » command from the « File » menu
is used to generate an executable starting from a project in
progress (an « .EXE » file executable on a PC with WINDOWS).
The AUTOSIM « viewer » is automatically integrated with the
generated executable (the executable user does not need
AUTOSIM). This viewer makes it possible to use the application
without modifying it. You can easily distribute your applications.
The generated executable is not covered by copyright. This

 User manual

autoSIM3 20 ©Copyright 2011 SMC

technique is normally used for producing a supervising
application.

Modifying project properties
With the right side of the mouse click on the « Project» element on the
browser and select « Properties » from the menu.

Modifying security options
You can restrict reading or modification access to a project by
passwords.

Advanced options
« Save the environment aspect with the project »: if checked, the position
of the windows and the aspect of the toolbars are saved in the « .AGN »
file. When the project is opened, these elements are reproduced.

« Hide the main window upon launching … »: if checked, the AUTOSIM
window is hidden when the project is opened. Only IRIS objects
incorporated in the project will be displayed. This option is normally used
to create « package » applications which only leave IRIS objects
displayed. Use the [CTRL] + [F11] keys to redisplay the AUTOSIM
window.

The other options are used to change the display of the AUTOSIM
window when a project is opened.

User interface
« Block IRIS object configuration »: if checked, a user cannot modify
IRIS object configuration.

The other options are used to modify the behavior of the user interface.

Model
« This project is a document model »: if checked, when opened all the
options and the documents it contains act as a model for the creation of
a new project. This functionality is used to create standard configuration
which can be uploaded when AUTOSIM is launched (for example a
default symbol file or a default processor configuration).

Defining a mode

To define a mode that can be used when launching AUTOSIM (like the
“Expert” and “Beginner” modes), save a project model in the “models”
sub-directory of the AUTOSIM installation directory. An image can be

 User manual

autoSIM3 21 ©Copyright 2011 SMC

linked to a model. To do this, create a “jpg” format file with the same
name as the “.agn” file. This file must have the following dimensions: 120
pixels wide by 90 pixels high.

Automatic GO
«Automatic go at project launch »: if checked, the application is
automatically run when a project is opened.

The project is used to group together the elements of an AUTOSIM
application. Once regrouped, the elements form a compact file with
« .AGN » extension. The project models are used to be able to easily
manage different software configurations. Generation of executables
makes it easy to distribute applications.

 User manual

autoSIM3 22 ©Copyright 2011 SMC

The Browser

A central element for application
management, the browser is used for
fast access to different application
elements: sheets, symbols,
configuration, printing, IRIS objects
etc.

The « + » and « - » icons are used to
develop or retract project elements.

Actions on the browser are effected
by double clicking on the elements
(opens the element) or by clicking
with the right side of the mouse
(adds a new element to a project,
special action on an element etc.).

Certain operations are effected by
dragging and dropping the elements
and moving them on the browser.

The colors (generally called up at the
bottom of documents in the work
space) are used to identify families of
elements.

 Browser tree

 User manual

autoSIM3 23 ©Copyright 2011 SMC

Sheets
A sheet is a page where a program or part of a program is designed.

Using sheets is extremely simplified in AUTOSIM3. The sheet chaining
orders needed in the previous versions are no longer used. For multiple
sheets to be compiled together, they only need to be in the project.

The icons associated to the sheets are shown below:

- normal sheet,
- normal sheet (excluding compilation),
- sheet containing a macro-step expansion,
- sheet containing a function block program,
- sheet containing a key,
- sheet containing a key (excluding compilation),
- sheet containing an encapsulation,

Icons are marked with a cross indicating a closed sheet (not displayed in
the work space). Double clicking on this type of icon opens (displays) the
associated sheet.

Adding a new sheet
With the right side of the mouse click on the « Sheets » element on the
browser then select « Add a new sheet ».

Select the sheet size (XXL is the
recommended format, the other
formats are for older versions of
AUTOSIM, GEMMA is only used
for creating GEMMA models).

The sheet can be given any
name, but each project sheet
must have its own name.

The comment area is up to your
discretion for modifications or
other information relative to each
sheet.

 User manual

autoSIM3 24 ©Copyright 2011 SMC

Importing old AUTOSIM version sheets, importing CADEPA sheets
With the right side of the mouse click on the « Sheets » element on the
browser then select « Add one or more existing sheets ».

Selecting one or more sheets to import.

From the « Type » list select « AUTOSIM » or « CADEPA » for the sheet
type to import then click on OK.

There are some restrictions for importing CADEPA sheets:

- the step numbers must be individual (the same step number
cannot be used on multiple sheets),

- references must be converted with links to CADEPA before being
able to import them.

By keeping the [CTRL] key pressed down, you can select multiple
sheets.

Modifying the sheet compilation order
The sheets are compiled in the order they are listed in for the project. To
modify this order, click on the sheet with the left side of the mouse on the
browser and move it in the list.

 User manual

autoSIM3 25 ©Copyright 2011 SMC

Deleting a sheet from the list
With the right side of the mouse click the sheet to be deleted on the
browser and select « Delete » from the menu.

Exporting a sheet to a « .GR7 » file
With the right side of the mouse click the sheet to be deleted on the
browser and select « Export » from the menu.

Copying, Cutting, Pasting a sheet
With the right side of the mouse click the sheet on the browser and
select « Copy/cut » from the menu. To paste, with the right side of the
mouse click on the « Sheet » element on the browser and select
« Paste ».

This option makes it possible to copy or transfer sheets from one project
to another.

Renaming a sheet
See « Modifying properties » below.

Modifying sheet properties.
With the right side of the mouse click the sheet on the browser and
select « Properties » from the menu.

 User manual

autoSIM3 26 ©Copyright 2011 SMC

You can modify the
sheet name, the syntax
used for literal
language and variable
names. The « Do not
compile this sheet »
option is used to
exclude the sheet from
the compilation. The
« Display in GEMMA
format» option is only
available if the sheet
format is GEMMA and
is used to display and
modify a sheet in
GEMMA format. The
« Block the of use
inputs/outputs other
than set symbols »
option blocks the use of
i, %i, o %q variables
not attributed to
symbols. Access to the
sheet can be protected
by a password. -The
« comments » area is
left to your discretion.

Symbols
The list of symbols provides the correspondence between « symbol »
names and variable names. A project may only have one symbol table.

Creating a symbol table
With the right side of the mouse click on the « Symbols» element on the
browser and select « Create a symbol table » from the menu.

Importing a symbol table
With the right side of the mouse click on the « Symbols» element on the
browser and select « Import a symbol table » from the menu.

 User manual

autoSIM3 27 ©Copyright 2011 SMC

Configuration

Post-processors
This section contains all the post-processor configuration elements (see
the post-processor manual for more information).

Compiler options
Double click on this element to modify the settings of compiler options.

Documentation
This is used to access the file printing function (double click on the
« Print » element. You can print a complete file composed of an end
paper, cross reference table, symbol list and sheets. The print setup
function is used to display all these elements.

 User manual

autoSIM3 28 ©Copyright 2011 SMC

Generated files

Generating the instruction list in pivot code
By double clicking on « Pivot code » you generate a list in low level literal
language (AUTOSIM pivot code). Viewing of the generated code is
normally reserved for specialists involved in understanding the
translation methods used by the compiler.

Generating the cross reference list
Double clicking on the « Cross reference » element generates and
displays the list of variables used in an application with any associated
processor variables and the name of or sheet(s) where they are used.

Post-processors
The other elements concern the files generated by the post-processors:
instruction lists are in processor language.

Settings
Contains the tools to display and modify the state of the variables.

Viewing and modifying a variable or variable table
With the right side of the mouse click on « Settings » and select
« Monitoring » to open an element where you can see the state of a
variable or variable table.

A monitoring window.

Open the
menu

Close

Previous
variable

Next variable Select a
variable

Modify the state
of another
variable

 User manual

autoSIM3 29 ©Copyright 2011 SMC

The monitoring window in « 10 variables table » mode.

The monitoring window in “Variables Table” mode

Modify the
variable state by
clicking in this
area

Re-size the window by
dragging one of the
edges in order to see
more or fewer variables

Click on this button to display
the expanded information
(automaton symbols and
names of variables)
associated with each variable

Click on these buttons
to change the size of
the information
displayed in the table

 User manual

autoSIM3 30 ©Copyright 2011 SMC

IRIS objects
IRIS 2D objects are used to create consoles, supervision applications
and simulation applications of 2D operating parts. IRIS 3D is used to
create simulation applications of 3D operating parts. Each IRIS 2D object
appears in the project tree (see the chapters IRIS 2D references and
IRIS 3D references for additional information).

Adding an IRIS 2D object
Click with the right side of the mouse on « Add an IRIS 2D object ». The
object selection assistant is used to select it and set its parameters.

Selection assistant for an IRIS 2D object

 User manual

autoSIM3 31 ©Copyright 2011 SMC

Deleting an IRIS 2D object
With the right side of the mouse click on the IRIS object on the browser
and select « Delete » from the menu.

Displaying or hiding an IRIS 2D object
With the right side of the mouse click on the IRIS object on the browser
and select « Display/hide » from the menu.

Cutting, copying, pasting an IRIS 2D object
With the right side of the mouse click on the IRIS object on the browser
and select « Copy » or « Cut » from the menu.

To paste, with the right side of the mouse click on the « Sheet » element
on the browser and select « Paste ».

To paste an IRIS object on a console, select « Paste» from the console
menu or click with the right side of the mouse on the console on the
browser and select « Paste».

Adding a new IRIS 2D object on a console
Select « Add an object » from the console menu or click with the right
side of the mouse on the console on the browser and select « Add an
object on the console » from the menu (for more information on the
console see the chapter « Console » object)

Modifying the properties of an IRIS 2D object
With the right side of the mouse click on the IRIS object on the browser
and select « Properties ». For higher level objects (parent objects),
special properties can be accessed:

 User manual

autoSIM3 32 ©Copyright 2011 SMC

Properties of high level objects

Display establishes under which conditions the object is displayed or
hidden. The reinstallation option is used to return an object to its initial
state when dynamic display is launched (normally used for OP simulation
applications).

Setting an object model accessible on the assistant
With the right side of the mouse click on the IRIS object on the browser
and select « Save as model » from the menu.

Selection of modifiable parameters for users of your models

You can select the list of parameters which remain accessible to the user
on the assistant. By clicking on « Save », you save your object model.
The storage directory for object models is « <AUTOSIM installation
directory>\i2d\lib ». You can use a sub-directory called « my objects » for
saving your models.

 User manual

autoSIM3 33 ©Copyright 2011 SMC

Importing an IRIS 2D object in an earlier version of AUTOSIM
With the right side of the mouse click on the « IRIS» element on the
browser and select « Import IRIS 2D objects ». Select one or more
« .AOF » files.

Creating an IRIS 3D console
With the right side of the mouse click on the « IRIS » element on the
browser and select « Add an IRIS 3D console » (see the chapter on IRIS
3D for more information).

Resources
This project element is used for adding all types of files to a project. Files
which are added will become an integral part of the project and will be
saved along with the other elements. To refer to a pseudo directory
where the resources are, the key word « <RESDIR> » can be used in the
specific directory name in AUTOSIM. For example IRIS objects can refer
to bitmaps if they are included in the resources.

Adding a file to the resources
With the right side of the mouse click on the « Resources» element on
the browser and select « Add » from the menu.

Deleting a file from the resources
With the right side of the mouse click the resource file on the browser
and select « Delete ».

Renaming a file in the resources
With the right side of the mouse click the resource file on the browser
and select « Rename ».

Modifying a file in the resources
With the right side of the mouse click the resource file on the browser
and select « Modify ».

Adding and converting 3D STUDIO files in the resources
3D STUDIO files can be converted into .x files and added to the
resources by clicking with the right side of the mouse on the
« Resources » element on the browser and selecting « Import 3D files »
(see the chapter IRIS 2D references and IRIS 3D references for more
information).

 User manual

autoSIM3 34 ©Copyright 2011 SMC

External modules
These elements are reserved for executable modules developed by third
parties and interfaced with AUTOSIM.

The browser is used to display and manage all the project elements. By
double clicking on the elements or by clicking with the right side of the
mouse, you access the different functions applicable to each element.

 User manual

autoSIM3 35 ©Copyright 2011 SMC

Designing programs
Various tools are available for designing programs.

Designing with the assistant
This is without doubt the simplest when starting with AUTOSIM. With the
right side of the mouse click on an open sheet in the work space and
select « Assistant » from the menu. You will then be guided for making
selections. When you have finished click on « OK » and put the design
on the sheet by clicking with the left side of the mouse.

The assistant

 User manual

autoSIM3 36 ©Copyright 2011 SMC

Designing with the shortcut menu
Click with the right side of the mouse on an open sheet in the work
space, the menu will propose a series of elements that you can put on
the sheet. This is an instinctive and fast creation method.

Designing with the pallet
By selecting elements on the pallet you can quickly create programs
starting from previously created elements.

Enhancing and customizing the pallet
 « .GR7 » files are used to set the pallet, they are located in the directory
« <AUTOSIM installation directory>\pal ». You can delete, modify,
rename or add files. To generate « .GR7 », files use the « Export »
command by clicking with the right side of the mouse on a sheet on the
browser. The names displayed on the pallet are « .GR7 » files. Relaunch
AUTOSIM for a new element to be displayed on the pallet.

Designing with the keyboard keys
Each key is associated to design blocks. The « Blocks » element also
provides access to the blocks. The table below lists the blocks and their
use.

Delete block

Aspect Associated key Generic name Comments Languages

[A] Delete Used to make a cell blank

again
All

Link blocks

Aspect Associated key Generic name Comments Languages

[E] Vertical link Link from top to bottom

or bottom to top
All

[F] Horizontal link Link from right to left or

left to right
All

 User manual

autoSIM3 37 ©Copyright 2011 SMC

[G] Upper left corner Link towards the bottom

right or bottom left
All

[H] Upper right corner Link towards the bottom

left or bottom right
All

[I] Lower left corner Link from top to right or

left to top
All

[J] Lower right corner Link from top to left or

right to top
All

[Z] Cross Crosses two links All

Grafcet blocks

Aspect Associated key Generic name Comments Languages

[B] Step Normal step Grafcet

[C] Initial step without

activation
Initial step without

activation
Grafcet

[D] Initial step Initial step Grafcet

 Macro-step Only available in the

shortcut menu
Grafcet

.

[+] Encapsulating step An encapsulation must
be linked

Grafcet

.

[-] Initial encapsulating step An encapsulation must
be linked

Grafcet

.
 Initial state mark Défine intial state for an

encapsulation
Grafcet

[T] Transition Transition Grafcet

.
[$] Source transition Can replace the

transition symbol
Grafcet

[£] Exit transition Can replace the
transition symbol

Grafcet

 User manual

autoSIM3 38 ©Copyright 2011 SMC

.

 Link for action on
transition crossing

Use the following
element to design the

action rectangle

Grafcet

.

 Start of an action
rectangle on transition

crossing

Use the [X] and [Y]
elements to end the

rectangle

Grafcet

[K] Left limit of an « And »

divergence
Compulsory to the left

of an « And »
divergences

Grafcet

[L] Supplementary branch

of an « And »
divergence or an

« And » convergence

Do not use as a left or
right limit of an « And »

divergence

Grafcet

[M] Right limit of an

« And » divergence
Compulsory to the right

of an « And »
divergence

Grafcet

[N] Extension of an « And »

divergence
If placed in the [K], [L],
[M], [P] or [O],[P],[Q],

[L] blocks

Grafcet

[O] Left limit of an « And »

convergence
Compulsory to the left

of an « And »
convergence

Grafcet

[P] Supplementary branch

of an « And »
convergence or an
« And » divergence

Do not use as a left or
right limit of an « And »

convergence

Grafcet

[Q] Right limit of an

« And » convergence
Compulsory to the right

of an « And »
convergence

Grafcet

[R] « Or » divergence Do not use as a limit of

an « Or » convergence
Grafcet

[S] « Or » convergence Do not use as a limit of

an « Or » divergence
Grafcet

[U] Skip or repeat left step « Or » convergence or

divergence
Grafcet

 User manual

autoSIM3 39 ©Copyright 2011 SMC

[V] Skip or repeat right step « Or » convergence or

divergence
Grafcet

[SPACE] on an
[E] block

Link towards the top For relooping and
repeating steps

Grafcet

Flowchart blocks

Aspect Associated

key

Generic name Comments Languages

[0] (zero) Flowchart assignment Separates the « test »

from the « action »
area

Flowchart

[1] « Not » function Complements the

block input signal
Flowchart

[2] « And » function Combines the inputs in

an « And » logic
Flowchart

[3] « Or » function Combines the inputs in

an « Or » logic
Flowchart

[4] Block environment Enlarges an « And » or

« Or » function block
Flowchart

[5] Bottom of block Ends an « And » or

« Or » function block
Flowchart

Ladder blocks

Aspect Associated key Generic name Comments Languages

[(] Start left coil Starts an action Ladder

[)] Start right coil Ends an action Ladder

[U] Left limit Ends the diagram Ladder

[V] Right limit Starts the diagram Ladder

[R] Connection « Or » function Ladder

[S] Connection « Or » function Ladder

 User manual

autoSIM3 40 ©Copyright 2011 SMC

Action blocks

Aspect Associated

key

Generic name Comments Languages

[W] Action rectangle left

limit
Starts an action Grafcet and Flowchart

[X] Action rectangle

environment
Extends an action Grafcet and Flowchart

[Y] Action rectangle

right limit
Ends an action Grafcet and Flowchart

[.] Left side of a
double action
rectangle

Starts a double action
rectangle

Grafcet and Flowchart

.

[/] Middle of a double
action rectangle

Prolongs a double
action rectangle

Grafcet and Flowchart

.

[%] Right side of a
double action
rectangle

Ends a double action
rectangle

Grafcet and Flowchart

[S] Divergence Action Used to vertically

juxtapose action
rectangles

Grafcet and Flowchart

[V] Divergence Action Used to vertically

juxtapose action
rectangles

Grafcet and Flowchart

. [#] Action on
activation

Defines the type of
action

Grafcet

 [_] Action on
deactivation

Defines the type of
action

Grafcet

.

[@] Event-driven
action

Defines the type of
action

Grafcet

.

 User manual

autoSIM3 41 ©Copyright 2011 SMC

Test blocks

Aspect Associated

key

Generic name Comments Languages

[7] Left limit of a test Starts a test Flowchart and ladder

[6] Right limit of a test Ends a test Flowchart and ladder

Organization chart blocks

Aspect Associated

key

Generic name Comments Languages

[<] Organization chart

input
Indicates the input in a

rectangle
Organization

chart

[=] « False » output Output if a test

rectangle is false
Organization

chart

Function block blocks

Aspect Associated

key

Generic name Comments Languages

[8] Upper left corner of a

function block
Starts the name of the

function block
Function block

[9] Upper right corner of a

function block
Ends the name of the
function block

Function block

[:] Lower left corner of a

function block
Adds an input to the
function block

Function block

[;] Left limit of a function

block
Adds an input to the
function block

Function block

[>] Right limit of a

function block
Adds an output to the
function block

Function block

[?] Lower right corner of a

function block
Adds an output to the
function block

Function block

 User manual

autoSIM3 42 ©Copyright 2011 SMC

Other blocks

Aspect Associated

key

Generic name Comments Languages

.

[*] Combination /
transition link

This block is a link
between the Logical
Diagrams or Ladder
languages and the
Grafcet language

Grafcet /
Flowchart /
Ladder

Documenting program elements
To document program elements, click below with the left side of the
mouse. To create comments, click on a blank space on the sheet. To
validate modifications, push the [Enter] key or click outside the editing
are with the left side of the mouse. To delete modifications, push the
[Esc] key or click outside the editing area with the right side of the
mouse.

When editing tests and actions, a « … » button appears under the editing
area. If you click on it you access an assistant for creating tests or
actions.

Test creation assistant

 User manual

autoSIM3 43 ©Copyright 2011 SMC

Adding symbols
To create a symbol, click with the right side of the mouse on the symbol
table in the work space and select « Add ». Or click the button on the
toolbar. You can also launch program compiling containing unset
symbols. You will be asked for variables corresponding to the symbols
during the compilation.

Attribution of symbols during compilation

To easily design a program, create a new sheet, then click with the right
side of the mouse on the bottom of the sheet. Select « Assistant » from
the menu, you will then be guided by it.

 User manual

autoSIM3 44 ©Copyright 2011 SMC

Running an application

To run an application easily

The button on the toolbar is the quickest way to see application run
results. This pushbutton activates the following mechanisms:

- compilation of the application if it is not updated (not already
compiled after the last modifications),

- installation of the run module (with downloading if the current target
is a processor and following the connection options),

- passage of the target to RUN,
- activation of the dynamic display.

To end the run

Click on . On the processor target, the program continues to be run
on the target. On the PC, the program is stopped.

To compile only

Click on .

To stop the compilation

Click on .

To connect to a processor or install a PC

Click on .

To disconnect a processor or uninstall a PC

Click on .

To put the target in RUN mode
Click on .

To put the target in STOP mode
Click on .

To initialize the target

Click on .

 User manual

autoSIM3 45 ©Copyright 2011 SMC

To run a program cycle on the target (generally not supported on
processors)

Click on .

To activate the dynamic display

Click on .

To run an application, click on the « GO » button. To end the run, click
again on the same button.

 User manual

autoSIM3 46 ©Copyright 2011 SMC

The compiler

The compiler translates the sheets into a set of pivot language equations
(these can be displayed by double clicking on the « Generated code /
pivot language » element on the browser).

The pivot language is then translated into a language which can be run
by a post-processor (the current post-processor can be displayed and
selected by double clicking on the « Targets » panel accessible by
clicking on the « Targets » tab at the lower part of the window where the
browser is.

Modifying compiler options
Double click on the element « Configuration / Compiler options».

Displaying compilation messages
The « Compilation » panel on the messages window contains the counts
produced by the last compilation.

Finding an error
By double clicking on error messages, you can find the source.

An error message and its source

 User manual

autoSIM3 47 ©Copyright 2011 SMC

If the message windows are hidden and if one or more errors are
detected by the compiler, a dialogue box indicates the first error detected
(to display the message windows: use the « Messages » command from
the « Windows » menu).

At the end of the compilation the « Compilation » window provides a list
of any errors. By double clicking on the error messages, the site in the
program that caused the error is displayed.

 User manual

autoSIM3 48 ©Copyright 2011 SMC

Running programs on a PC

The « run PC» target is an actual processor loaded in your PC.

You can:

- test your applications,
- drive a virtual operating part created with IRIS 2D or 3D,
- drive input/output cards connected to the PC.

Configuring the number of variables
Double click on the « Configuration / Post-processors / Executor PC /
Variables » element.

Selecting the number of variables

The space needed for the variables used in the application is
automatically reserved by default. You can manually select the amount
of memory to reserve for each type of variable. This may be necessary if
an indexed addressing is used to access a variable table.

 User manual

autoSIM3 49 ©Copyright 2011 SMC

 PC system variables
Bits 0 to 99 and words 0 to 199 are system variables and can not be
used as user variables in your applications. The two tables below provide
details on the PC system variables.

Bits Use

0 active at first cycle, activation of initial Grafcet steps

1 to 4 reserved for I/O drivers

5 to 7 reserved for I/O driver errors

8 error on watchdog overflow is equal to 1

9 and

10

error general PC fault

11 run mode 1=RUN, 0=STOP

12 emergency stop pass to 1 in the event of an error or set to 1 to stop the program

13 to

29

reserved for drivers

30 bit associated to timer 1

31 bit associated to timer 2

32 bit associated to timer 3

33 bit associated to timer 4

34 bit associated to timer 5

35 bit for repeating sector (pass to 1 on repeat sector, reset to zero is the job of the
programmer)

36 setting this bit to 1 causes reading of the clock in real time and transfer to System
words 4, 5, 6, 7, 8, 51 and 52.

37 setting this bit to 1 causes writing of System words 4, 5, 6, 7, 8, 51 and 52 in the
real time clock.

38 to

55

reserved

56 division by zero

57 to

67

reserved for future versions

68 to

99

reserved for the stack of boolean processing

Words Use

0 reserved for the upper part of the multiplication result or the remainder of the
division

1 to 3 timers in milliseconds

4 timer in 1/10 second

5 timer in seconds

6 timer in minutes

7 timer in hours

8 timer in days

9 to 29 reserved for I/O drivers

30 timer 1 counter

 User manual

autoSIM3 50 ©Copyright 2011 SMC

31 timer 2 counter

32 timer 3 counter

33 timer 4 counter

34 timer 5 counter

35 timer 1 procedure

36 timer 2 procedure

37 timer 3 procedure

38 timer 4 procedure

39 timer 5 procedure

40 lower part of clock reference

41 upper part of clock reference

42 to

50

reserved for I/O drivers

51 timer in months

52 timer in years

Modifying the run period
Double click on « Post-processors / Executor PC / Run ».

Setting the run period

 User manual

autoSIM3 51 ©Copyright 2011 SMC

Driving inputs/outputs
Double click on « Configuration / Post-processor / Executor PC / I/O
Drivers ».

Adding an I/O driver

Select a driver from the list on the right and then click on « Add ».

« Set parameters » is used to configure certain drivers.

The executor PC transforms your PC into a program processor, it can be
used to drive inputs/outputs directly connected to your computer.

 User manual

autoSIM3 52 ©Copyright 2011 SMC

IRIS 2D references

IRIS 2D objects are used to create supervision and simulation
applications of 2D operating parts.

The link between the objects and the automatically functioning
applications is always created by interchanging the variable state.

IRIS 2D objects are contained in WINDOWS windows.

An IRIS 2D object

IRIS 2D objects have two possible states: the « Configuration » mode
(used to modify the object characteristics) and « Use » mode (for using
an object). The « User » mode is also called « Employ » mode.

Modifying object display
The objects can be hidden or displayed. This property can be specified
when opening an object or when changing the state of the dynamic
display in the environment. Only higher level objects (not objects located
on a console) can be displayed or hidden. Objects located on a console
are displayed or hidden at the same time as the console.

To dynamically modify the visibility of objects, click with the left side of
the mouse on the objects on the browser and select « Display/Hide ».

To modify the display properties, click with the left side of the mouse on
the objects on the browser and select « Properties ».

 User manual

autoSIM3 53 ©Copyright 2011 SMC

Display properties of an object.

Modifying object characteristics

Removing an object
Method 1: click the button on the surface of the object.
Method 2: with the right side of the mouse click on the object on the
browser and select « Delete » from the menu.

Dimensioning an object
By dragging the object from one of its edges you can enlarge or shrink it
(you can also precisely modify the size of an object by accessing its
properties, see below).

Moving an object
Drag the object by clicking with the left side of the mouse on the minibar
located on the upper part of its surface.

Putting an object in « User » mode
Method 1: click on the button on the object with the left side of the
mouse.
Method 2: click with the right side of the mouse on the object.

Putting an object in « Configuration » mode
Click with the right side of the mouse on the object.

Modifying the characteristics of an object
Method 1: click on the button.
Method 2: push down the [CTRL] key on the keyboard and click with the
right side of the mouse on the object, then release the [CTRL] key.

 User manual

autoSIM3 54 ©Copyright 2011 SMC

Method 3: with the right side of the mouse click on the object on the
browser and select « Properties » from the menu.

Block access to configuration for all objects
With the right side of the mouse click on « Project » on the browser,
select « Properties » and check « Block IRIS 2D object configuration »
on the « Advanced » tab.

Basic objects, preset objects
The basic objects set major functionality types. Preset objects are based
on a basic type and a configuration to meet a specific need. For an
example, an emergency pushbutton is an object derived from a basic
object used to create pushbuttons and lights. To access preset objects,
use the assistant by clicking with the right side of the mouse on the
« IRIS » element on the browser and select « Adding an IRIS 2D
object ».

List of basic objects

« Console » object
The console object is the only object which can contain other objects on
its surface. It is used to create command consoles and animation
surfaces for virtual operating parts. This object has a pushbutton used
to manage objects on its surface: add, move, delete etc.

The « Button and light » object
This is used to create pushbuttons and lights that interact with the
processing application variables.

The« Object » object
This is a polymorphic element primarily used to simulate operating parts.

The « Digital value » object
This is used to display numeric values of the processing application in a
number format.

The « Screen, keyboard, message list » object
This is used to display information on the processing application in a text
format.

 User manual

autoSIM3 55 ©Copyright 2011 SMC

The « Sound » object
This is used to produce output sounds when the variable state of the
processing application changes.

The « Data archive » object
This is used to display processing application data in a table or chart
format and save them in the computer memory or on the disk.

The « Program » object
This is used for processing run separately from the processing
application.

The « Dialogue box » object
This is used to display messages in a pop-up window format regarding
changes in the variable state of the processing application.

The « Analog value » object
This is used to display processing application numeric variables in an
analog numeric format (bars, dials etc.).

Practical experience
In this chapter you will be able to quickly create your first IRIS 2D
application. We are going to create a console, put a pushbutton on it and
link the object variables to the processing application.

Step 1
Creating a minimal application with AUTOSIM see chapter Designing
programs.

This is a Grafcet with one step as shown below.

0

Step 2
Launch the run of the AUTOSIM application (click on the « Go » button
on the toolbar).

 User manual

autoSIM3 56 ©Copyright 2011 SMC

Step 3
With the right side of the mouse click on the « IRIS » element on the
browser and then select « Add an IRIS 2D object » from the menu. In the
« Basic objects » category, double click on « Console ».
At this point the object will appear on the screen in this format:

Step 4

To add a pushbutton to the console click on the console icon (menu
access) and select the « Add an object » option. In the « Basic objects »
category, double click on « illuminated button ».
The object will then appear on the console:

Step 5
Now we are going to associate the pushbutton to a processing

application output, for example %Q4. Click the pushbutton icon (not
the console icon). The pushbutton properties dialogue box will open:

 User manual

autoSIM3 57 ©Copyright 2011 SMC

Click the « Links » tab (upper part of the dialogue window). In the
« Action when button is pressed » section enter « %Q4=1 ». In the
« Action when button is released » section enter « %Q4=0 ». Then click
on « OK » on the pushbutton on the lower part of the dialogue window.
Actions on the pushbutton will drive processing application output 4. You
can open a « Monitoring » window from the « Set-up » menu by clicking
with the right side of the mouse on the browser. You display the state of
output 4 when you click then release the pushbutton.

Step 6
We are going to associate a light to the « Illuminated Button » object, this
light will be associated to a processing application input (for example 12).

Click the pushbutton icon again. In the « Aspect » tab click on the
« Pushbutton and light » radio button. Click on the « Links » tab and
enter « %i2 » in the « Light state » section. Click on the « OK »
pushbutton in the lower part of the property dialogue window. You can
keep the state of variable « %i2 » modified (with a « Monitoring » window
or by modifying the state of the physical input, if it exists).

 User manual

autoSIM3 58 ©Copyright 2011 SMC

Step 7
We are going to duplicate the « Illuminated Button » on the console in
order to obtain a second pushbutton whose properties we will modify.
Click on the pushbutton with the left side of the mouse while pressing
down the [SHIFT] key. Black squares will appear around the selected

object. Click on the console icon and select the « Copy » option.

Click on the console icon and select the « Paste » option. Now there
are two overlapping « Illuminated Button» objects. Drag the upper one (it
is the only accessible one) by its upper bar and move it away from the
other pushbutton. The object which has been duplicated has the same
properties as the first. Now you can set the parameters for the second
object, for example, so it is linked to output 5 and input 3.
You can also customize the aspect of the pushbuttons by using the
aspect tab for the two objects. You can modify the size of the objects by
dragging their edges.
The three objects on the screen (console and two pushbuttons) are in
« Configuration » mode, this means that they have a mini bar on the
upper part of their surface, icons and edges for modifying their
dimensions. The objects have another mode called « Employ », in this
mode their aspect is permanent: the upper bar, icon and edges for
modifying the dimensions no longer exist. To tilt an object, click on it with
the right side of the mouse.
At this point you will have created an object that looks like this:

 User manual

autoSIM3 59 ©Copyright 2011 SMC

Creating an autonomous supervision application
To create an autonomous supervision application (without developing a
processing application with AUTOSIM) follow the procedure below:

- create correspondences for the AUTOSIM variables and the
processor variables by double clicking on the « Configuration /
Post-processor / <post-processor name> / Variable
correspondence » element (see the post-processor manual for
more information).

- compile the application by clicking on the button on the toolbar
(this validates the variable correspondence).

- configure the connection mode on « Only connect » by double
clicking on « Configuration / Post-processor / <post-processor
name> / Connection option ».

Comments:
- the « Automatic go » project option is used to obtain an application

which automatically connects to the target to be started.
- the « Generate an executable » on the « File » menu is used to

obtain an autonomous supervision application which is zipped and
not covered by copyright in the format of a single executable file.

Syntax for accessing the state of variables
You can use variable names in AUTOSIM , IEC 1131-3 or a symbol
syntax. The « … » pushbuttons located near the drag areas in the object
are used to access the assistant for selecting a variable name.

Boolean state
This syntax is used in the object « states » section.

To test the state of a boolean variable, use the variable name, for
example: « i0 », « %q0 », « gate open ».

To test the complement state of a boolean variable, add a character « / »
in front of the variable name, for example: « /i4 », « /%M100 », « /high
level ».

To test the equality of a numeric variable with a constant, use the name
of the numeric variable followed by « = », « < », « > » and a constant, for
example: « %MW200=4 », « speed>2 ».

 User manual

autoSIM3 60 ©Copyright 2011 SMC

The complement state is used for creating « if different », « if less than or
equal to» and « if greater than or equal to » tests, for example:
« /%MW201<300 ».

The operator '&' is used to test a bit of a numeric variable, for example
M200&4 tests the third bit (4 = 2 power 3) of word m200.

Numeric state
This syntax is used in the object « states » section.

To read the state of a numeric variable, use the variable name, for
example: « %MW300 », « m400 », « pressure », « _+V_ ».

Modifying the state
This syntax is used in the object « order » section.

To modify the variable state, add the « = » sign followed by a constant
after the variable name.

The following constants are used for boolean variables:
« 0 », « 1 », « F1 » (set to 1), « F0 » (reset), « UF » (end set), for
example: « %Q0=1 », « %I10=F1 », « %I12=UF ».

For numeric variables, the constant is a number, for example:
« M200=1234 », « speed=4 ».

Special orders
The following key words can be used in the object order sections:

« RUN »: puts the target in RUN mode,

« STOP »: puts the target in stop,

« INIT »: initializes the target,

« STEP »: effects a step on the target,

« GO »: identical to the environment GO command,

« ENDGO »: stops the GO command,

 User manual

autoSIM3 61 ©Copyright 2011 SMC

« EXIT »: exits the environment,

« UCEXIT »: exits the environment without asking for confirmation,

« OPENAOF(<object>) »: displays an object. « <object> » designates an
object by its title and identifier number (configured in object properties)
with the « #identifier » syntax.

« CHAINAOF(<object>) »: displays an object and hides the current
object. « <object> » designates an object by its title and identifier number
(configured in object properties) with the « #identifier » syntax.

Interchanging objects
« PARENTPARAM(parameter {+n} {-n}) »
This is used for a sister object to access a parent console parameter.
The parameter must be set in the parent console « Links / Data for sister
objects » section. See the chapter « Console » object SISTERPARAM(
identifier , parameter)
When used for the OBJECT object, this syntax makes it possible to read
an object's value. See the « Object » object.
SETPARAM(identifier , parameter , value)
Used to modify the object parameter.
To access the list of parameters that can be modified, click with the right
side of the mouse on « Illuminated Button» while editing the action areas
of an object, then select the « Parameters » command.

Details of a « Console » object

« Aspect » tab

Window

This is used to set the aspect of the console window: presence of edges,
a title bar (in this case a title can be given) presence of close and reduce
icons. If you check « Display help messages » you set-up a message
area at the bottom of the window, the size of this area is automatically
established based on the selected font (see below). If this area is not set,
messages from the sisters will be displayed on the parent console of the
console and on the bottom of the AUTOSIM environment window (if the
object does not have a parent).

 User manual

autoSIM3 62 ©Copyright 2011 SMC

Console background

This establishes the console background: color (see below), transparent
(accessible only if the console is the sister of another console), bitmap
(the background is set by a « .BMP » file, for example created with
PAINTBRUSH).

Colors

This is used to select the color for the console background (if a colored
background is selected - see above), the background and the characters
of the help message display area (if this area is valid - see above).

Fonts for the help area

This establishes the font used for displaying help messages at the
bottom of the console.

Object size

This establishes object dimensions in number of dots. These values can
be modified to precisely set the size of an object.

Texts

Help text and bubble text.

« Bitmap » tab

Bitmap

If the console background contains a bitmap (see « Aspect » tab) the
editing area must contain a complete access name to a « .BMP » file (16
color, 256 color and 24 bits formats are supported).
The « SCAN » and « EDITOR » pushbuttons are respectively used to
search for a « .BMP » file and edit a file with WINDOWS PAINTBRUSH
software.

« Links » tab

Data for sister objects

This editing area is used to set parameters that sister objects can access
with the key word « PARENTPARAM ». One setting per line must be
written. Each setting must comply with the following syntax:
« PARAMETER=VALUE ».

 User manual

autoSIM3 63 ©Copyright 2011 SMC

« Options » tab

Grid

This is used to set a grid (invisible) for positioning objects. Only the
« Move» command on the console integrated menu uses the grid. Grid
values are expressed in number of pixels. Values 0 and 1 cancel the grid
effect. This function must be used to perfectly align objects.

Resetting sisters

If you check « Continue to reset sisters ... » you establish that the sister
must continue to be updated when the console is changed to an icon.
This option is used, when it is not selected, to increase system
performance when a console changed to an icon only contains visual
elements.

« Sisters » tab

Sisters

This section contains the list of console sister objects. The « Properties »
pushbutton is used to directly open the properties dialogue box for the
sister selected from the list. The « Destroy » pushbutton eliminates the
selected object. The « Positions » editing areas are used to set object
positions.

« External » tab

Executable name

Name of an executable file operating on the console.

Parameters

Parameters provided on the command line for the executable.

Details of an « Illuminated Button » object

« Aspect » tab

Object type

This is used to select the object type: pushbutton, light or pushbutton
integrated with a light.

 User manual

autoSIM3 64 ©Copyright 2011 SMC

Colors

This is used to select the object color. If the object is a pushbutton, the
« Background off » setting represents the color of the pushbutton. If the
object is a light or a pushbutton integrated with a light the « Background
on » setting establishes the color of the background when the light is on
and « Background off » when the light is off. If the object aspect is
established by a bitmap only the character color can be set.

Object size

This establishes object dimensions in number of dots. These values can
be modified to precisely set the size of an object. This is necessary if the
object aspect is established by a bitmap.

Font

This is used to select character font and size. The font file used must be
present on the PC where the program is run.

Text

This is used to specify the text displayed on the object, its position, its
print direction as well as the help text displayed when the button is
pressed and a bubble text which is displayed when the cursor is placed
on the object.

« Links » tab

Action when

This is used to set the actions to be effected when the button is pressed
and when it is released.
An action can be setting the state of a variable, for example:
O0=1, m200=4, _depart cycle_=3

Or a preset key word
Configuration example where the input 10 reflects the pushbutton state
(i10 to 0 if the button is released, i10 to 1 if the button is pressed):
Action when the button is pressed: i10=1
Action when the button is released: i10=0

Light state

Establishes the light state. This section must contain the name of a
variable which drives the light: 0 = light off, 1 = light on.

For example:

b31, o4, _light init_, m200=50, m400<8, m500&16

 User manual

autoSIM3 65 ©Copyright 2011 SMC

Identifier

This is used to refer to an object in relation to the other objects.

Deactivation condition

This is used to deactivate the light. If this section contains a variable
name, then that variable deactivates the object if it is true.

« Options » tab

Type of pushbutton

This establishes if the pushbutton is bistable (it remains pressed)
monostable or a combination of the two: monostable with a simple click
and bistable with a double click.

Keyboard

This is used to associate a key to a pushbutton. If this key or
combination of keys is present on the keyboard then the pushbutton will
be pressed.

Different syntaxes can be used to set the key code:
• a simple character: For example A, Z, 2,

• the $ character followed by hexadecimal key code,

• the name of a function key, for example F5.

For combinations of keys CTRL+ or SHIFT+ must be added to the
beginning.
For example: CTRL+F4 or SHIFT+Z.

Bitmap

This is used to specify a bitmap which contains the design of an object.

The « Resize the image » option is used to extend the bitmap over the
entire surface of the object.

The bitmap file contains the four possible object aspects: button released
light off, button pressed light off, button released light on, button pressed
light on.

Even if the file is a pushbutton without a light or a light there are always
four aspects of which only two are used.
The bitmap file is divided horizontally in four.

 User manual

autoSIM3 66 ©Copyright 2011 SMC

Example:

The « Different aspect if the cursor is on the object… » option is used to
display a different image when the cursor passes over the object.

If this option is checked, the bitmap file contains 8 aspects, four
supplementary aspects are added to the right of the bitmap to contain
the design of the object when the cursor is on the object.

Example:

Sounds

If WAV files are selected, the object can produce sounds if the object is
pressed, released or if the cursor is on the object.

 User manual

autoSIM3 67 ©Copyright 2011 SMC

Details of a « Digital value » object

« Aspect » tab

Format

This is used to set the type of display:
• Always display the sign: display the '+' sign for positively signed

values,

• Signed value: sets the signed or unsigned mode for 16 or 32 bit
integers (only base 10),

• Display all digits: display the 0 at the beginning of the value if
necessary.

Base

• Establishes the display base for 16 and 32 bit integers.

Colors

This is used to select the background colors of the object (if it is not
transparent) and the characters.

Font

This is used to select character font and size. The font file used must be
present on the PC where the program is run.

Number of digits

Sets the length of the integer and decimal parts.

Background

This is used to select either a colored or transparent (if the object is only
placed on one console) background.

Object size

This establishes object dimensions in number of dots. These values can
be modified to precisely set the size of an object.

 « Texts » tab

Bubble Text

Text displayed in a bubble when the user puts the cursor on the object.

 User manual

autoSIM3 68 ©Copyright 2011 SMC

Text displayed before and after the value

This is used to display information to the left and right of a numeric value.

« Links » tab

Variable or symbol

This designates the variable to display. To access a time delay counter
or procedure the following syntax must be used:
• for the counter: COUNT (time delay), example: COUNT(t3),

• for the procedure: PRED(TIME DELAY), EXAMPLE: PRED(t7),

The Variable state can be modified

If this is checked then the user can modify the variable state by clicking
on the object.

Details of an « Analog value » object

« Aspect » tab

Objects

This is used to set the type of display.

Print direction

This establishes print direction: horizontal or vertical.

Colors

This is used to select the background colors of the object (if it is not
transparent) and the object.

Background

This is used to select either a colored or transparent (if the object is only
placed on one console) background.

Object size

This establishes object dimensions in number of dots. These values can
be modified to precisely set the size of an object.

Texts

Bubble text.

 User manual

autoSIM3 69 ©Copyright 2011 SMC

« Links » tab

Variable or symbol

This designates the variable linked to an object (a word or a counter).

User action …

This establishes if a variable can be modified by the user.

 « Limits» tab

Minimum, maximum

Minimum and maximum values.

Start angle, end angle

To display the type of dial which establishes the start angle and end
angle. The values are expressed in degrees:

« Graduations » tab

Using the graduations

This validates or invalidates the use of graduations

 User manual

autoSIM3 70 ©Copyright 2011 SMC

Start value, end value

Values displayed for the graduations, these values can be signed and/or
floating point numbers.

No small graduations, no large graduations

No graduations (two levels) related to start and end values. These values
can be floating point numbers.

Font

This establishes the characters used for the graduations.

Area N°1, area N°2 and area N°3

This is used to establish colored areas. « Start value » and « End value »
set each area. The color for each area is specified by three components
of red, green and blue between 0 and 255.

Colors

This establishes the character and graduation color. Again here the
colors are expressed by their three components: red, green and blue.

Details of « Screen, keyboard, message list » object

Links with the application
The link between the object and the application is made using word
tables.

To send data to a type of object (with or without the keyboard) the data
must be placed starting from the second word of the reception table plus
the length of the data in the first word in the table (maximum length is
255). Each word contains a datum.

The data can be: an ASCII character, a number of a preset message +
8000 hexa, or a special command: 100 hexa deletes the window, 200
hexa displays the date, 300 hexa displays the time, 400 displays the
message number.

When the object has reread the available data in a table it resets the first
word to 0 to indicate that the operation has been effected.

 User manual

autoSIM3 71 ©Copyright 2011 SMC

The principle is the same for « with keyboard » objects: the first word of
the transmission table contains the number of characters entered on the
keyboard, the following words contain the characters (one per word). The
application must reset the first word to 0 when it has used the data.

The interchange table for the « Message box, alarm list » object has a
fixed length of 10 words. As is true for the « Screen » type the first word
starts the message display. If it is different than 0 it designates a
message number to be displayed. Only registered messages can be
displayed. The first word can also take an ffff hexa value to clear the
message box.

Description of 10 words used for interchanges with the « Message box »:

Word 0 represents the first word on the table, Word 1 the second, etc.
Word 0: message number to be displayed if 0 is no messages or ffff hexa
to clear all messages,
Word 1: class number for the message (see chapter message classes
for a more detailed explanation).

The following words establish the date and time and can displayed for
each message. A value equal to ffff hexa asks the object to use the
current computer date and time (this does not include milliseconds).
Word 2: day
Word 3: month
Word 4: year
Word 5: hours
Word 6: minutes
Word 7: seconds
Word 8: milliseconds
Word 9: reserved (put 0)

Message classes
Message classes are used to classify messages into families which
share the following characteristics: background color, character color and
an icon.
there are two preset classes:
• the information message class: blue characters on a white

background, icon , it bears the number -1,

 User manual

autoSIM3 72 ©Copyright 2011 SMC

• the alarm message class: white characters on a red background, icon

, it bears the number -2.

Other classes can be set by the user.
A bubble text can be associated with the object.

« Aspect » tab

Object type

This is used to set an object type. See chapter links with the application

Colors

This is used to select the background colors of the object and the
characters.

Font

This is used to select the character font used for displaying texts.

Object size

This establishes object dimensions in number of dots. These values can
be modified to precisely set the size of an object.

Texts

Bubble text.

« Links » tab

Reception, transmission

This sets the first variables of the reception and transmission tables.
These areas can contain a variable name or symbol.

« List » tab
These sections do not regard « Message box » objects.

Icons

If this is checked an icon is displayed before the messages.

Classes

If this is checked a message class number is displayed

 User manual

autoSIM3 73 ©Copyright 2011 SMC

Days, Months, Years, Hours, Minutes, Seconds, 1/1000 seconds

If these are checked each one of these elements is displayed.

Messages

If this is checked a message is displayed.

Numbers

If this is checked a message display number is displayed.

Message classes

This editing area is used to establish new message classes. Each line
sets a class. The following must appear in order and be separated by
commas on each line: the background color three components red,
green and blue), the character color (three components red, green and
blue), the class name, the bitmap file name for the icon associated to the
class.
For example:
255,0,0,0,0,0,ALARM,alarm.bmp
Means:
Red background color, black character color, ALARM class name, file
containing icon: « alarm.bmp ».

 « Options » tab

Displaying character hexadecimal codes

This option is used to display hexadecimal code for each character in
place of its ASCII representation. It is used for « Screen ... » type objects
and is normally used for starting up programs.

Horizontal, vertical scroll bar

Displays or hides scroll bars.

Converting OEM characters to ANSI

If this is checked, the characters from the processing application are
automatically converted from OEM characters (MS-DOS) to ANSI
characters (WINDOWS). The reverse conversion is applied to characters
which drive the object for the processing application.

 User manual

autoSIM3 74 ©Copyright 2011 SMC

Duplicating messages to ...

This section can receive a file or peripheral name (for example, « LPT1 »
for the printer) It is possible to specify multiple files and/or peripherals by
separating them with a comma. The displays will be automatically
duplicated: Printing « edge of the water ».

Associating a message storage file ...

This is used for setting a file which will be associated to the object and
used for storing information. If this file exists then the messages will be
saved (according to the number set in the « number of memorized lines»
section, when the number is reached the oldest data is deleted. When
the object is open, and if a storage file exists since its last use, then the
data contained in the file is transferred to the object.

Write the old message to ...

This is used to set a file or a peripheral which receives old messages
(the messages which are eliminated from the storage file to make room).

Number of memorized lines ...

This establishes the message storage file capacity in number of lines.
The value 0 attributes the maximum space that can be used (not a fixed
limit).

« Messages » tab

Preset messages

This editing box is used to document preset messages (one per line).

Details of « Data archive » object

« Aspect » tab

Objects

This is used to set the type of display.
The object can be represented in table format (figure 1.1) or graph
format (figure 1.2).

 User manual

autoSIM3 75 ©Copyright 2011 SMC

(figure 1.1) (figure 1.2)

Colors

This is used to select the font color when the object is in a table format
as well as color for marking values on the graph.

Object size

This establishes object dimensions in number of dots. These values can
be modified to precisely set the size of an object.

Text

A bubble text associated with the object.

 « Data » tab

First variable to read

This is used to select the first variable to be archived.

Number of variables to read

This indicates to the ARCHIVE object the consecutive number of
variables to the « First variable to read » that it must archive.

Number of memorized registrations

This is used to size memory database.
A registration represents an acquisition of « n » variables (« n » is the
number of variables to read).

Periodic reading

Variable acquisition will be done at fixed intervals of ARCHIVE object
running.

Start reading

Variable acquisition will be effected when the « Control word » has given
the order.

 User manual

autoSIM3 76 ©Copyright 2011 SMC

Period

This is used to establish the time between two acquisitions. The time is
in Day(s)/Hour(s)/Minute(s)/Second(s)/Millisecond(s) format:
J for days
H for hours
M for minutes
S for seconds
MS for milliseconds

E.g.: 2J
E.g.: 2H10M15S

Control

This is used to set a variable (a word) that controls the ARCHIVE object.
From the value taken in the count, its contents is reset by the ARCHIVE
object.

Value Action
0 Nothing
1 Start an acquisition (Reading started)
2 Freeze the acquisitions
3 Restart archiving (after freezing)
4 Clear the memory database
5 Destroy the archive file
6 Activate « Save last acquisitions » mode
7 Cancel « Save last acquisitions » mode

« Options » tab

Use the image file

The image file is used:
At the end of using the ARCHIVE object, to save the database present in
the memory.
When the ARCHIVE object is launched, to reconstruct the database
present in the memory during the last use.

Using the archive file

Each acquisition is saved in the file in standard database format.

Displaying

Acquisition date: This is used to display the acquisition date of a
registration.

 User manual

autoSIM3 77 ©Copyright 2011 SMC

Acquisition time: This is used to display the acquisition time of a
registration.
Hours, minutes, seconds, milliseconds: This is used to configure the
acquisition time display.
The time display is effected downstream from the display of acquisitions
for the TABLE object (figure 3.1) or under the grid when it is set for the
GRAPH object (figure 3.2)

 (figure 3.1) (figure 3.2)

« Tables » tab

Font

This is used to select a font for displaying the column name, times and
acquisition value.

Column name

This is used to set the column name for the TABLE object as well as the
display format for these columns (figure 4.1)
syntax: name, format

format * Display
no format specified Signed, decimal, visible
h Hexadecimal
d Decimal
ns Not signed
s Signed
nv Not visible
v Visible

* The different options can be combined, for example:
Format Display
d,ns,v Decimal without sign visible

 User manual

autoSIM3 78 ©Copyright 2011 SMC

(figure 4.1)

« Graph» tab

Minimum, maximum value

This is used to select the minimum and maximum values for displaying
graphs.
Only values included between the minimum and maximum values will be
displayed on the screen.

Display

This is used to set the display time.
This is communicated to the ARCHIVE object in the
day(s)/Hour(s)/Minute(s)/Second(s)/Millisecond(s) format:
J for days
H for hours
M for minutes
S for seconds
MS for milliseconds
E.g.: Display 2H30M10S
E.g.: Display 100MS

Plotting values on the graph

This is used to make a mark on the graph for each acquisition (figure
5.1)

 User manual

autoSIM3 79 ©Copyright 2011 SMC

Displaying time

This is used to display the date and time of an acquisition of one or more
variables on the grid if it is open. Colors and fonts can be set for the time
display.

Outline colors

This is used to set a color for each graph. The first graph has the color of
the first line, the second graph has the color of the second line etc.
Colors are in Red, Green, Blue format.
E.g.: 255,0,0 red outline
If a color is not set on a line, the graph corresponding to this line will not
be outlined.

(figure 5.1)

« Graduations » tab

Using the graduations

This validates or invalidates the use of graduations (figure 6.1).

Start value, end value

Values displayed for the graduations, these values can be signed and/or
floating point numbers.

No small graduations, no large graduations

No graduations (two levels) related to start and end values. These values
can be floating point numbers.

Font

Establishes the characters used for the graduations.

Area N°1, area N°2 and area N°3

This is used to establish colored areas. "Start value" and "End value" set
each area. The color for each area is set by three components of red,
green and blue between 0 and 255.

 User manual

autoSIM3 80 ©Copyright 2011 SMC

Colors

This establishes the character and graduation color. Again here the
colors are expressed by their three components: red, green and blue.

(figure 6.1)

« Grid » tab

Displaying the grid

This validates or invalidate grid display.

Not for ordinates

This sets the vertical pitch of the grid.

Not for abscissas

This sets the horizontal pitch of the grid. The pitch is in
Day(s)/Hour(s)/Minute(s)/Second(s)/Millisecond(s) format:
J for days
H for hours
M for minutes
S for seconds
MS for milliseconds
E.g.: 1J
E.g.: 2H30M15S

Color

This is used to set a color for each grid.
The color is in Red, Green, Blue format
E.g.: 255,0,0 Red outline

 User manual

autoSIM3 81 ©Copyright 2011 SMC

Details of « Object » object

« Aspect » tab

Type

This is used to set one of the object type aspects:

• « n bitmap aspects »: the object aspect is provided by a bitmap file
which can contain various aspects, see the chapter « Bitmap » tab

• « n bitmap colors »: the object aspect is provided by a bitmap file, the
color is controlled by a processing application variable that replaces
the blank pixels of the bitmap. The other bitmap pixels must be black.
The processing application variable provides a color number, the
colors are set in the « Colors » tab.

• « gauge bitmap »: the object is a gauge with a format set by a bitmap.
The blank bitmap pixels set the format. The other pixels must be black.
The minimum, maximum and print direction are set in the « Gauge »
tab.

• « n format colors »: a rectangle, a rectangle with rounded edges or an
ellipse. The color is managed in the same manner as « n bitmap
colors ».

• « gauge formats »: the object is a rectangular gauge. The principle is
the same as for a « gauge bitmap »

Colors

This is used to select the character color for the text displayed on the
object.

Font

This establishes the font used for displaying text on the object.

Object size

This establishes object dimensions in number of dots. These values can
be modified to precisely set the size of an object.

Texts

Help text and bubble text.

 User manual

autoSIM3 82 ©Copyright 2011 SMC

The text displayed on the object: the position and print direction can be
modified.

« Links » tab

Clicked object, not clicked object

This sets the actions to be effected when the user clicks on the object
and when the user stops clicking the object.
An action can be setting the state of a variable, for example:
O0=1, m200=4, _depart cycle_=3

Or a preset key word.
A configuration example where the input i10 reflects the clicked state of
an object (i10 to 0 if the object is not clicked, i10 to 1 if the object is
clicked):
Clicked object: i10=1
Not clicked object: i10=0

Permanently connect with ..

This area can receive the identifier of a sister object. If this object exists
then the position of the object is modeled on it. The identifier of an object
is an integer value between 1 and 32767. It is specified in the
« Identifier» editing area of the « Links » section.

Aspect/Color/Filling

This area of the dialogue box contains 8 editing areas which can be used
to set different types of object behavior based on the processing
application variables.
No matter what their behavior they will always have a position which
depending on the type of object will design:
• an aspect contained on a bitmap for the « n bitmap aspects » type

• a color number for « n bitmap colors » or « n format colors »

• filling for the « gauge bitmap » or « gauge format » types.

The « Position » area can contain a numeric variable name (C or M). The
areas « + Position » and « - Position » can contain a name of boolean
variables.

 User manual

autoSIM3 83 ©Copyright 2011 SMC

Two types of operation are possible:

• if the « + Position » and « - Position » areas are documented then the

boolean variables contained in them will drive the position: they add or
delete the value specified in the speed area. If the « Position » area is
documented then the current position is written in the variable which
contains the name.

• if the « + Position » and « - Position » areas are blank then the value
containing the variable where the name is written in the « Position »
area will be read as the object position.

The position can vary between the values set in the « Min » and « Max »
areas.
Sensors can be added (boolean variable names) which will be true for
the minimum and maximum position (position equal to minimum or
maximum).

Horizontal movement, vertical movement

These dialogue box areas each contain 8 editing areas respectively used
to set the horizontal and vertical position of the object. The principle is
identical to that described above.

« Formats » tab

Formats

For « n format colors » this section is used to select a rectangle, a
rectangle with rounded corners or an ellipse.

« Bitmap » tab

File name

For « n bitmap aspects, n bitmap colors and gauge bitmap » this editing
area must contain a complete access name to a « .BMP » file. These
files can be created with PAINTBRUSH or another graphics editing
program able to create « .BMP » files.
The « Scan » and « Edit » pushbuttons are respectively used to search
for « .BMP » files and to edit (launch of PAINTBRUSH) « .BMP » file if its
name is in the editing area.

Number of aspects

This editing area must contain the number of aspects (images) contained
in a « .BMP » file. This option is used for « n bitmap aspects ». The

 User manual

autoSIM3 84 ©Copyright 2011 SMC

different object aspects must be designed one under the other. The
highest aspect is the number 0.

« Wmf » tab

File name

For « Meta files » this editing area must contain a complete access name
to a « .EMF » file.

Example of a « .BMP » file with 4 aspects:

The bitmap has transparent areas ...

This option is used to create an object with certain transparent areas (the
background of the parent console will be displayed). The transparent
areas are set by pixels of the same color, a color established by the
three components, red, green and blue. To set these components use
the three scroll bars. The color must be precisely set: exactly the same
proportion of red, green and blue as the color of the pixels in the
transparent areas.

 « Colors » tab

Colors

This area is used for « n bitmap colors » and « n format colors » Each
line contains the setting for a color. The syntax used for each line is:

 User manual

autoSIM3 85 ©Copyright 2011 SMC

proportion of red (between 0 and 255), proportion of green (between 0
and 255) and proportion of blue (between 0 and 255). The first line
designates color number 0, the second line number 1, etc.
This area is used for « gauge bitmap » and « gauge format ». The first
line (color 0) and the second (color 1) establishes the two colors of the
gauge (active and inactive part).

« Gauge » tab

Gauge

This section is used for « gauge bitmap » and « gauge format ». The
« Minimum value » and « Maximum value » establish the limits for the
gauge drive variable.

Gauge print direction

This establishes one of the four possible directions for the gauge.

« Sensor» tab
The OBJECT object can be used as a sensor. The sensor is associated
with a boolean variable where the result is true if the sensor is in contact
with one or more of the preset colors (see below), otherwise it is false.

Detection position

This is used to set the side of the object which must be detected.
Detection is effected on the two edges of the selected side.

Example for detection from below:

Detected colors

A sensor is capable of detecting up to three different colors. If one of
these three colors is at the test points then the boolean variable
associated to the sensor (see chapter « Links » tab) is positioned at 1,
otherwise it is positioned at 0.
The three editing areas can contain a color setting in the format of three
values between 0 and 255 which respectively correspond to the

 User manual

autoSIM3 86 ©Copyright 2011 SMC

percentages of red, green and blue. The percentages of these three
colors must exactly correspond to the colors of the object to be detected
in order for the sensor to work.

« Options » tab

Key

Set a key used to simulate a click on an object.
Different syntaxes can be used to set the key code:
• a simple character: For example A, Z, 2,

• the $ character is followed by hexadecimal key code,

• the name of a function key, for example F5.

For combinations of keys « CTRL+ » or « SHIFT+ » must be added to
the beginning
For example: « CTRL+F4 » or « SHIFT+Z ».

The TAB key is used to access this object

If this is not checked then the TAB key cannot be used to activate the
object.

Advanced techniques

Dynamic object linking

This possibility is used to momentarily link one object to another. The « +
Position » and « - Position » parameters which manage the horizontal
and vertical position are used in a special way for linking one object to
another. These two parameters must contain the name of a numeric
variable (M). The « + Position » variable must contain the f000 value
(hexadecimal) and the « - Position » the identifier of the object to be
connected. The « + Position » variable is reset once the connection has
been made. To cancel the object connection the value f001
(hexadecimal) must be put in the « + Position » variable. See chapter:
Example of operating part simulation 1

Interchanging parameters between two objects

A object can access the parameters of a sister object by using the key
word « SISTERPARAM ».
The syntax is:
SISTERPARAM(identifier of the sister object, parameter)
« parameter » can assume the following values:

STATE object state: Aspect/Color/Filling value

 User manual

autoSIM3 87 ©Copyright 2011 SMC

STATE same as above but with negative value
POSX position on horizontal axis
POSX same as above but with negative value
POSY position on y axis
POSY same as above but with negative value
POSX+STATE position on horizontal axis plus state
POSX+STATE position on horizontal axis minus state
POSY+STATE position on vertical axis plus state
POSY+STATE position on vertical axis minus state

Details of « Sound » object

« Aspect » tab

Object size

This establishes object dimensions in number of dots. These values can
be modified to precisely set the size of an object.

« Sounds » tab

Name of sound files

Complete access name to « .WAV » files.

Associated variables

The boolean variable associated to each sound.

Details of « Dialogue box » object

« Aspect » tab

Type of box

This is used to select the various controls present in the dialogue box:
only one OK button, two buttons OK and CANCEL, or two buttons YES
and NO.

Icons

This is used to select the icon that will appear in the dialogue box. There
are four different icons, but it is possible not to display any of them. It is
also important to note that a special system is associated to each icon.
See the section on the BEEP option for more information on the subject.

 User manual

autoSIM3 88 ©Copyright 2011 SMC

Object size

This establishes object dimensions in number of dots. These values can
be modified to precisely set the size of an object.

Beep

This is used to specify if the dialogue box display must be accompanied
by a sound warning.

Title

This is used to specify the title of the dialogue box.

Message type

There are two possibilities. A preset message is a message present in
the processing application user variables. The other possibility is to
specify a message list in this case the displayed message is a function of
the monitored variable state.

« Links » tab

Variable name

This specifies the name of the variable to monitor. Boolean or numeric
variables can be entered.

For example:
 m200, i0

If the variable is boolean, then message no. 1 on the list will be displayed
when the state of that variable passes to 1.

For a numeric variable, if the « Message list » configuration option is
checked, then the dialogue box will be displayed when the value is
between 1 and the number of messages memorized on the list.

For example, if the list contains 8 messages, then it will not display
anything when the variable assumes negative values or those over 8. On
the other hand, when the value is between 1 - 8, then the appropriate
message is displayed.

If the « Preset message » option is activated, then the dialogue box will
display a message of the length contained in the variable, and situated in
the processing application variables based on that variable.

 User manual

autoSIM3 89 ©Copyright 2011 SMC

For example. if m200=4, this means that a message 4 characters long is
situated in the 4 variables following m200, or rather m201, m202. m203,
m204.

Dialogue box return code

With a boolean variable, no matter what action the user effects, it
contents will go to 0. For a numeric variable, there are different return
codes:

Press on an OK button: the variable assumes the value 8000 (hexa)
Press on an CANCEL button: the variable assumes the value 8001
(hexa)
Press on an YES button: the variable assumes the value 8002 (hexa)
Press on an NO button: the variable assumes the value 8003 (hexa)

Comment: Activation of a dialogue box is based on a rising edge, this
means passage from 0 to 1 for a boolean variable, and passage from a
value outside the message list range to a value included in it, for a
numeric variable.

Identifier

This is used to refer to an object in relation to the other objects.

« Messages » tab

Message list

Enter the different preset messages in this area.

Details of « Program » object

Run time distribution
IRIS objects are run by turns. The run time distribution is managed in a
straightforward manner by the object manager. two priority levels are
possible for « PROG » objects: if Priority run » is checked on the
« Program » tab, then the whole program is run while the object is
present. Otherwise, only one line is run before the object yields. There
are exceptions to this rule: access functions to the processing variables
(« READVAR » and « WRITEVAR ») may cause yielding, the YIELD

 User manual

autoSIM3 90 ©Copyright 2011 SMC

function sets a yield. In priority run mode, this function must be used
inside a loop in order not to block running of other objects.

Display
The object surface can be used for displaying information. The
« PRINT » function is used to display information.

Syntax
The character « ; » (semicolon) is used as a separator. Comments can
be written between the chains « (* » and « *) ». There is no difference
between upper and lower case letters for key words and function names,
on the other hand, for variable names there is a difference.

Stating variables
The variables used in a program must be stated before the program
between the key words « BEGINVAR; » and « ENDVAR; ».
The following types of variables can be used:

INT 16 bit signed integer
UINT 16 bit unsigned integer
LONG 32 bit signed integer
ULONG 32 bit unsigned integer
STRING string of characters
FLOAT float

The general syntax of a statement is:
<type> <variable name>;
The general syntax for stating a variable table is:
<type> <variable name> [<length>];

For example:

BEGINVAR;

INT counter; (* a 16 bit signed integer *)

STRING string; (*a string*)

(*a table of 100 32 bit unsigned integers*)

ULONG table[100];

ENDVAR;

 User manual

autoSIM3 91 ©Copyright 2011 SMC

Writing a program
The program must be written between the two key words « BEGIN; »
and « END; »

Example:

BEGIN;

print "Good morning !";

END;

Constants
� 16 bit integer: a decimal number between -32768 and 32727 where

"S" follows a hexadecimal number between 0 and FFFF. Example: 12,
-4, $abcd

� 32 bit integer: a decimal number between -2147483648 and
214743648 where "L" or "S" follows a hexadecimal number between 0
and FFFFFFFF followed by "L". Example: 10000L, -200000L,
$12345678L

� string of characters: quotation mark characters followed by a string
followed by quotation mark characters. Controls characters can be
entered in a string. « \ n » replaces an LF character (ASCII code 10),
« \r » a CR character (ASCII code 13). Example: "Abcdef", "" (zero
string), "Follow\r\n"

- float: a decimal number followed by the character "R", the characters "."
are used to divide the integer part from the decimal part. Example: 3.14r,
-100.4r

Assignment
The string «:= » indicates an assignment.

Example:
counter:=4;

var:="ABCDEF";

 User manual

autoSIM3 92 ©Copyright 2011 SMC

Calculations
Calculation operators are evaluated from left to right. Parentheses can
be used to specify a calculation priority.

List of calculation operators:
� + addition (chaining for strings)

� - subtraction

� * multiplication

� / division

� << shift to the left

� >> shift to the right

� ^ raise by a power

� binary "and" AND

� binary "or" OR

� binary "exclusive or" XOR

Examples:
result:=var1*(var2+var3);

result:=result<<2;

Tests
Syntax:
IF <condition> THEN ... ENDIF;

or
IF <condition> THEN ... ELSE ... ENDIF;

Example:
IF (count<100) AND (count>10)

 THEN

 count:=count+1;

 ELSE

 count:=0;

 ENDIF;

 User manual

autoSIM3 93 ©Copyright 2011 SMC

Loops
Syntax:
WHILE <condition> DO ... ENDWHILE;

Example:
count:=0;

WHILE count<1000

 DO

 table[count]:=table[count+1];

 count:=count+1;

 ENDWHILE;

Variable or variable table address
The syntax &variable name or &variable table name provides the
address of a variable or variable table. This syntax is necessary for some
functions.

List of functions
For the proposed examples below, the following is supposed:
vint is an INT type variable, vlong is a LONG type variable, vuint is a
UINT type variable, vulong is a ULONG type variable, vfloat is a FLOAT
type variable, vstring is a STRING type variable.

PRINT

Display function. The data to be displayed is written after and separated
by commas. Example:
print "The result is:",vint/12,"\n";

NOT

Complement. This function can be used with the if test to complement a
result.
Example:
if not(1<2) then ...

ABS

Absolute value.
Example:
print abs(0-4); (* display 4 *)

 User manual

autoSIM3 94 ©Copyright 2011 SMC

VAL

Provides the value of a string expressed in decimal number format.
Example:
vlong=val("-123456"); (* vlong will contain -123456 *)

HVAL

Provides the value of a string expressed in hexadecimal number format.
Example:
vuint=hval("abcd"); (* vuint will contain abcd hexa *)

ASC

Provides the ASCII code of the first character of a string.
Example:
vuint:=asc("ABCD"); (* vuint will contain 65: ascii code of ‘A’ *)

CHR

Provides a string composed of one character where the ASCII code is
changed into a parameter.
Example:
vstring:=chr(65); (*vstring will contain string "A" *)

STRING

Provides a string composed of n characters. The first subject is the
number of characters, the second the character.
Example:
vstring:=string(100," ");

(* vstring will contain a string composed of 100 spaces *)

STR

Converts an integer numeric value into a string representing the value in
decimals.
Example:
vstring:=str(100); (* vstring will contain the string "100" *)

HEX

Converts an integer numeric value into a string representing the value in
hexadecimals.
Example:
vstring:=str(100); (* vstring will contain the string "64" *)

LEFT

Provides the left part of a string. The first subject is the string, the second
the number of characters to extract.
Example:
vstring:=left("abcdef",2); (* vstring will contain"ab" *)

 User manual

autoSIM3 95 ©Copyright 2011 SMC

RIGHT

Provides the right part of a string. The first subject is the string, the
second the number of characters to extract.
Example:
vstring:=right("abcdef",2); (* vstring will contain "ef" *)

MID

Provides part of a string. The first subject is the string, the second the
position where the extraction begins, the third the number of characters
to extract.
Example:
vstring:=mid("abcdef",1,2); (* vstring will contain "bc" *)

LEN

Provides the length of a string.
Example:
vuint:=len("123"); (* vuint will contain 3 *)

COS

Provides the cosine of a real value expressed in radians.
Example:
vfloat:=cos(3.14r); (* vfloat will contain the cosine of 3.14 *)

SIN

Provides the sine of a real value expressed in radians.
Example:
vfloat:=sin(3.14r); (* vfloat will contain the sine of 3.14 *)

TAN

Provides the tangent of a real value expressed in radians.
Example:
vfloat:=tan(3.14r); (* vfloat will contain the tangent of 3.14 *)

ATN

Provides the tangent arc of a real value.
Example:
vfloat:=atn(0.5r); (* vfloat will contain the tangent arc of 0.5 *)

EXP

Provides the exponential of a real value.
Example:
vfloat:=exp(1r); (* vfloat will contain the exponential of 1 *)

LOG

Provides the logarithm of a real value.

 User manual

autoSIM3 96 ©Copyright 2011 SMC

Example:
vfloat:=log(1r); (* vfloat will contain the logarithm of 1 *)

LOG10

Provides the base 10 logarithm of a real value.
Example:
vfloat:=log10(1r);

(* vfloat will contain the base 10 logarithm of 1 *)

SQRT

Provides the square root of a real value.
Example:
vfloat:=sqrt(2); (* vloat will contain the square root of 2 *)

DATE

Provides a string representing the date.
Example:
print "The date is:",date(),"\n";

TIME

Provides a string representing the time.
Example:
print "The time is:",time(),"\n";

RND

Provides a random number.
Example:
print rnd();

OPEN

Opens a file. The first subject is the file name, the second the access
mode, which can be: « r+b » opening in reading and writing, « w+b »
opening in writing (if the file exists it is destroyed. The function provides a
long which identifies the file. If the opening fails, the value provided is 0.
Example:
vulong:=open("new","w+b");

CLOSE

Closes a file. The subject is the file identifier provided by the OPEN
function.
Example:
close(vulong);

 User manual

autoSIM3 97 ©Copyright 2011 SMC

WRITE

Writes data in a file. The first subject is the file identifier provided by the
OPEN function. The second subject is a variable address, the third the
number of bytes to be written. The function provides the number of bytes
actually written.
Example:
vuint:=write(vulong,&buff,5);

READ

Reads data in a file. The first subject is the file identifier provided by the
OPEN function. The second subject is a variable address, the third the
number of bytes to be read. The function provides the number of bytes
actually read.
Example:
vuint:=read(vulong,&buff,5);

SEEK

Moves a file pointer. The first subject is the file identifier provided by the
OPEN function, the second the position.
Example:
seek(vulong,0l);

GOTO

Effects a jump to a label in the subject. The subject is a string.
Example:
goto "end"

...

end:;

CALL

Effects a jump to a subprogram. The subject is a string containing the
subprogram label.
Example:
BEGIN;

(* main program *)

call "sp"

END;

BEGIN;

(* subprogram *)

sp:

print "In the subprogram\n";

return;

 User manual

autoSIM3 98 ©Copyright 2011 SMC

END;

RETURN

Indicates the end of a subprogram.

READVAR

Reads one or more variables of the processing application. The first
subject is the processing variable name (variable or symbol name). The
second subject is the variable or 32 bit (longs or floats) variable table
address The third subject is the number of variables to be read. If the
function is executed with no errors, the value of 0 is provided.
Example:
readvar("i0",&buff,16); (* read 16 integers starting from i0 *)

WRITEVAR

Writes one or more variables of the processing application. The first
subject is the processing variable name (variable or symbol name). The
second subject is the variable or 32 bit (longs or floats) variable table
address. The third subject is the number of variables to be written. If the
function is executed with no errors, the value of 0 is provided.
Example:
writevar("o0",&buff,16);

(* write 16 outputs starting from o0 *)

CMD

Executes a command. The subject is a string which specifies the
command to be executed. This function makes it possible to use preset
IRIS commands. For more information see the chapter Special orders . If
the command is executed with no errors, the value of 0 is provided.
Example:
cmd("run");

YIELD

Yields control. This function is used so as not to monopolize the
execution when the object is run in priority mode.
Example:
WHILE 1

 DO

 ...

 yield();

ENDWHILE;

 User manual

autoSIM3 99 ©Copyright 2011 SMC

DLL

Calls up a DLL. The first subject is the DLL file name. The second is the
function name. The third is a pointer on a 32 bit variable which will
receive the function return code. The other subjects are passed to the
function.
Example:
dll "user","messagebeep",&vulong,-1;

Error messages
« separator ‘;’ missing »a semicolon is missing

« syntax error » syntax error detected

« variable set more than once » a variable set more than once

« not enough memory » the program run has saturated
 the available memory

« variable not set » a variable used in the program
 has not been set

« constant too big » a constant is too big

« program too complex » an expression is too complex,
 it must be broken down

« incompatible variable or constant
type » a variable or constant is not
 the expected type

« ’)’ missing » A closing parenthesis is missing

« ENDIF missing » The key word ENDIF is missing

« ’ENDWHILE’ missing » The key word ENDWHILE is
 missing

« label cannot be found » a goto or subprogram label cannot
 be found

« ’)’ missing » the closing square bracket is

 User manual

autoSIM3 100 ©Copyright 2011 SMC

 missing

« element number outside limit » a table element outside of the
 limits has been used

« too many overlapping ‘CALL’ » too many overlapping subprograms
 have been used

«‘RETURN’ found without ‘CALL’ » RETURN found outside a
subprogram

« variable size too small » the size of a variable is insufficient

« DLL file cannot be found » the DLL file cannot be found

« function cannot be found in DLL » the function cannot be found in the
 DLL file

« division by zero» a division by 0 has been
 produced»

« mathematical error » a mathematical function has
 caused an error

« Aspect » tab

Colors

This is used to select the object background and character color.

Object size

This establishes object dimensions in number of dots. These values can
be modified to precisely set the size of an object.

Text

This is used to specify a bubble text which is displayed when the cursor
is on the object.

 « Program » tab

Program

This editing area contains the program.

 User manual

autoSIM3 101 ©Copyright 2011 SMC

Run

If this is checked than the program is run.

Priority run

If this is checked than the program is run more rapidly.

Run at start-up

If this is checked then the program is run when the object is opened. This
option is used to save an object with the « Run » option not checked by
requesting a run when the object is loaded.

Go to the error

If an error has been detected when a program is running, then the
pushbutton is used to place the cursor in the place that caused the error.

 User manual

autoSIM3 102 ©Copyright 2011 SMC

IRIS 2D examples

The examples file names refer to the « Examples » subdirectory of the
directory where AUTOSIM is installed.

Example of composed objects
This example is used to let you understand how to create a « Decimal
keyboard » object composed of keys. « 0 » to « 9 » plus a key [ENTER]
for validating.

You will create a « Console » object, then starting from the console
menu you will create an « Illuminated Button » object. We are going to
set parameters for this object then we will duplicate it to obtain other
keys. Then we will adjust the duplicated key properties to customize
them: text display on the key and action We will then have a keyboard
with a uniform key aspect.

Link with the application will be effected by using a word.

When a key is pressed it will write its code (0 to 9 or 13 for the validation
key) in that word.

To specify that word we can give its name in the action section of the
properties for each object. The problem is that when we reuse the
« Decimal keyboard » object and if we want to use another word, it is
necessary to modify the properties of the 11 « Illuminated button »
objects.

To get around this problem we are going to use the possibility that sister
objects have of accessing a parameter set in the properties of the parent
console. The « Links » tab of the console property window is used to set
the parameter. Only write on one line in the editing area.
« KEYBOARD=M200 ». This line means that the keyboard parameter is
equal to M200.

The keyboard keys refer to the « KEYBOARD » parameter and not
directly to word M200. To change the word used, just change the
parameter setting in the console properties.

Going back to the aspect of our keyboard...

 User manual

autoSIM3 103 ©Copyright 2011 SMC

In order for the aspect of the keyboard to be satisfactory we are going to
set a grid to align the keys. In the console properties window and the
« Options » tab write the value « 10 » in the two « Grids » sections This
way the function moved from the console menu will use a 10 pixel grid.
We are also going to set the dimensions for the first key. We can directly
modify the dimensions of the key by dragging it by its edges, but for
greater precision we are going to modify the dimensions form the
« Object size in pixels » section of the « Illuminated Button » object
window property tab.

For example, enter « 30 » for the width and height.

At this point you can also customize the style of the key. the color and
font used for marking etc.

We are going to place this first key to the upper left of the keyboard (this
is an arbitrary choice). The keyboard we are going to create will look like
the numberpad of a computer keyboard. We are then going to mark this
key with the text « 7 » in the « Text » section of the « Aspect » tab.

We are also going to set parameters for the functional aspect of the key:
in the « Action when the button is pressed » section of the « Links » tab
we are going to write: « PARENTPARAM(KEYBOARD)=7 ». This means
that when the pushbutton is pressed the word designated for the
« KEYBOARD » parameter of the parent console will receive the value 7.
Delete whatever is in the « Action when the pushbutton is released'»
section.

We can also assign a computer keyboard key to the « Illuminated
Button » object. Then it will be possible to use the keyboard with the
mouse or computer keyboard. To assign a key to the « Illuminated
Button », object use the « Key » section of the « Options » tab. For
example, enter « 7 » to associate computer keyboard key « 7 » to the
object.

 User manual

autoSIM3 104 ©Copyright 2011 SMC

Then place key « 7 » at the upper left of the keyboard, like this:

To move this key, select the object ((SHIFT) key pressed, then click with
the left side of the mouse on the object), then use the « Move » function
from the console menu. This function is the only one which uses the grid
instead of moving by dragging the bar of sister objects.

To create other keys, duplicate the existing key:
• select the first key,

• select « Copy » from the console menu, then « Paste »

• move the previously pasted key,

• set parameters for the new key: (text, links and computer keyboard
key).

When you have finished the above row (keys « 7 », « 8 » and « 9 ») you
can then select all three keys together and duplicate them.

You can create a validation key (wider for filling the surface of the
keyboard).

To finish, resize the console and put the objects in « Employ » mode.

 User manual

autoSIM3 105 ©Copyright 2011 SMC

The final result should look like this:

� « Examples\IRIS2D\keyboard.agn »

Example of using the « Screen, keyboard, message list » object
as a message list

Instructions:

• the object must display four different messages based on the state
of four inputs (i0 to i3),

• for input 0: an information message « Start cycle »,

• for input 1: an information message « End cycle »,

• for input 2: an error message « Error 1 »,

• for input 3: an error message « Error 2 ».

• the messages must be displayed when the rising edge of the inputs
appears,

• a record of 50 messages will be kept in the object and saved on
the disk,

• the messages will be duplicated by a printer connected on
« LPT1: »,

• a pushbutton must be used to delete the messages.

 User manual

autoSIM3 106 ©Copyright 2011 SMC

Solution:

� « Examples\IRIS2D\screen keyboard 1.agn »

Variation:

Pressing on the pushbutton « Delete the messages » causes the « Do
you want to delete messages » dialogue box to open with a choice of
YES or NO.

Solution:

� « Examples\IRIS2D\Screen keyboard 2.agn »

Example of using the « SCREEN KEY » object as a terminal
Instructions:
Display a message « Enter a value », requires that a decimal value be
typed on the keyboard (two characters) then displays that value
multiplied by two after the « Result: » text.

Solution:

� « Examples\IRIS2D\terminal 1.agn »

 User manual

autoSIM3 107 ©Copyright 2011 SMC

Variation:
The displayed messages are stored in the object and no longer in the
processing application.

Solution:
� « Examples\IRIS2D\terminal 2.agn »

Example of an application composed of multiple pages
This example will let you understand how to create an application
composed of multiple elements: in this case a menu is used to access
two different pages.

� « Examples\IRIS2D\menu.agn »

Example of using the «OBJECT » object
Simulation of a jack.

Instructions:

• jack driven by two o0 outputs (extract the jack) and o1 (retract the
jack).

• two limit inputs i0 (jack retracted) and i1 (jack extracted.

Three objects will be used:

• a « Console » object acting as support,

• an « Object » for the jack body,

• an « Object » for the jack shaft.

 User manual

autoSIM3 108 ©Copyright 2011 SMC

Solution:

The jack body is an OBJECT object which remains static, only its aspect
is configured:

The jack shaft is an OBJECT object configured as follows:

 User manual

autoSIM3 109 ©Copyright 2011 SMC

 User manual

autoSIM3 110 ©Copyright 2011 SMC

� « Examples\Process Simulation\2D\tutorial1.agn »

Variation:

An intermediate position needs to be added on the jack. We are going to
use two supplementary objects for this: a piece attached to the jack shaft
which will activate a sensor and a sensor.
To connect the piece activating the sensor to the jack shaft, the jack
shaft needs to be associated to an identifier: in the « Identifier » section
of the « Links » tab write « 100 ». To connect the piece to the shaft, in
the « Horizontal movement, Position» section of the « Links » tab write:
« SISTERPARAM(100,STATE) ». This connects the piece with the jack
shaft state.

The object used as a sensor is set with parameters as follows:

 User manual

autoSIM3 111 ©Copyright 2011 SMC

The result is as follows:

� « Examples\Process Simulation\2D\tutorial2.agn »

Second variation:

A vertical jack attached to the horizontal jack shaft is added. This jack is
activated by one output (O2=1 to extract the jack, O2=0 to retract it). Two
limits are associated to i3 and i4.
The result is as follows:

 User manual

autoSIM3 112 ©Copyright 2011 SMC

� « Examples\Process Simulation\2D\tutorial3.agn »

Two OBJECT objects are added: one for the body of the jack and one for
the shaft.

Example of using the «ARCHIVE» object

Instructions:

• archive the state of 3 words of the processing application (m31 to
m33) every second.

• the state of 4 words will be displayed on a graph left on display for
10 seconds of acquisition.

• 1000 values will be memorized in the object.

• the acquisitions will be archived in a text format « data.txt » file.

Solution:

 User manual

autoSIM3 113 ©Copyright 2011 SMC

� « Examples\IRIS2D\archiving »

Example of using the «PROG » object

Instructions:

• pressing on a pushbutton must cause the inversion of the output
states O0 to O99.

Solution:

� « Examples\IRIS2D\program.agn »

Examples of supervision application 1

The following example illustrates the creation of a supervision
application. The supervision application displays the state of gates and
the level of tanks. The user's actions on the gates will invert the gate
state (open or closed). The RUN/STOP state of the application will also
be displayed and two pushbuttons will be used to go from RUN to STOP.

The result is as follows:

 User manual

autoSIM3 114 ©Copyright 2011 SMC

� « Examples\IRIS2D\supervision 1 »

OBJECT objects will be used to represent the gates. A bitmap file is
created to represent the gates: open state (green) and closed state (red):

Examples of supervision application 2

This example illustrates the use of a more evolved OBJECT object. The
application displays the state of a gate which can be:

• gate open (commanded opening and open gate sensor true):
green,

• gate closed (commanded close and closed gate sensor true): red,

• gate opening in progress (commanded opening and open gate
sensor false): blue,

• gate closing in progress (commanded closing and closed gate
sensor false): purple.

The user can invert the gate state by clicking on it.

The processing application manages the gate state.

 User manual

autoSIM3 115 ©Copyright 2011 SMC

� « Examples\IRIS2D\supervision 2.agn »

Example of operating part simulation 1

Simulation of a manipulator arm

� « Examples\Process Simulation\2D\manipulator arm.agn »

 User manual

autoSIM3 116 ©Copyright 2011 SMC

Example of operating part simulation 2
Simulation of an elevator

� « Examples\Process Simulation\2D\elevator.agn »

IRIS 2D objects are used to create supervision and simulation
applications of 2D operating parts.

 User manual

autoSIM3 117 ©Copyright 2011 SMC

IRIS 3D references

IRIS 3D allows you to create simulation applications for 3D operational
units. The TOKAMAK engine is integrated to IRIS3D to enable a realistic
physical simulation: gravity, interactions between objects.

IRIS 3D is used to animate 3D objects using standard model makers: 3D
STUDIO, SOLIDWORKS, SOLIDCONCEPTER, etc …

The native format of the files processed by IRIS 3D is « .X » files set by
Microsoft's DIRECTX 8.

A « .3DS » to « .X » converter is integrated into the environment.

The CROSSROADS program provided on the AUTOSIM installation CD-
ROM or downloaded from www.smctraining.com is used to convert a
significant number of 3D files to « .3DS » format.

IRIS 3D is in a window format enclosed in the IRIS 2D console. 3D
objects are animated on the console.

Each 3D file represents an object in IRIS 3D. The elements in an
operating part must have their own movement and must be represented
by separated files. For example, for a jack composed of a body and a
shaft, files must be created for the jack body and for the jack shaft.

To create animation of objects in a 3D world, one or more behaviors can
be applied to each of the objects. A behavior is composed of an object
modification (moving, changing color etc.) and a link with the processing
application variables to condition this modification. For example: extract
the jack shaft if the output for the processing application is true.

 User manual

autoSIM3 118 ©Copyright 2011 SMC

Tutorial
The “examples\process simulation\3d\tutorial 2” sub-directory in the
AUTOSIM installation directory has a WORD file that contains a tutorial
devoted to creating 3D operational units.

The list of objects is shown in the list. The objects linked to an object are
shown as sub-elements if the “Tree structure display” checkbox is
checked.

Creating an IRIS 3D console
With the right side of the mouse click on the « Iris » element on the
browser and then select « Add an IRIS 3D console ».

Creating an IRIS 3D console

 User manual

autoSIM3 119 ©Copyright 2011 SMC

Adding 3D files to the project
With the right side of the mouse click on the « Resources» element on
the browser and select « Import one or more 3D files » from the menu.
Select one or more « .3DS » files. (if your files are not in « .3DS » format,
use « CROSSROAD » to convert them).

The IRIS 3D console

 User manual

autoSIM3 120 ©Copyright 2011 SMC

Configuring the objects
Select « Open the configuration window » from the « Options » menu on
the IRIS 3D window.

The IRIS 3D configuration window

 User manual

autoSIM3 121 ©Copyright 2011 SMC

Adding objects to the 3D world

By clicking on the element you access the list of 3D
objects present in the resources. For example:

By selecting an object on that list and clicking on « Add » you add the
selected object to the 3D world. By clicking on « Add all » you add all the
objects on the list to the 3D world. The objects you have added will
appear on the list in the configuration window.

Removing a 3D file from the resources
With the right side of the mouse click the 3D file on the browser and
select « Delete ». The object needs to be deleted from the 3D world.

Removing an object from a 3D world
Click with the right button of the mouse on the object in the IRIS 3D
configuration window and select « Delete from the menu. »

Importing an “enhanced” object
Click on the “Import” button. A browser allows you to select the object to
be imported.

 User manual

autoSIM3 122 ©Copyright 2011 SMC

The browser for selecting “enhanced” objects

Once the object has been selected, click on “Open”. A parameter window
then allows you to define the variables that will be associated with the
object.

 User manual

autoSIM3 123 ©Copyright 2011 SMC

The window for defining the object’s parameters

In this example (for the cylinder), the cylinder’s piloting variable and the
two ends of stroke are to be parameterized. The object is then shown in
the 3D world and in the list of objects.

The object’s position and orientation can be modified.

 User manual

autoSIM3 124 ©Copyright 2011 SMC

Exporting an “Enhanced” object

To export an object, right-click with the mouse on the object and select
“Export”. The linked objects and all of the behaviors are saved.

After entering a name for the file, a dialogue box allows you to assign a
name to each variable used in the behaviors and to define whether this
parameter can be modified or not when it is re-read.

 User manual

autoSIM3 125 ©Copyright 2011 SMC

Example of creating a 3D simulation based on enhanced
objects

Let’s create a simulation in a couple of clicks for an operational unit: a
part destacker.

 User manual

autoSIM3 126 ©Copyright 2011 SMC

 User manual

autoSIM3 127 ©Copyright 2011 SMC

 User manual

autoSIM3 128 ©Copyright 2011 SMC

The pre-defined objects are located in the “i3d” sub-directory of the
AUTOSIM installation directory.

 User manual

autoSIM3 129 ©Copyright 2011 SMC

The object is shown in IRIS3D:

 User manual

autoSIM3 130 ©Copyright 2011 SMC

 User manual

autoSIM3 131 ©Copyright 2011 SMC

With the palette, design a Grafcet with two steps. A right click on the
sheet lets you access the link drawing application to loop back the
Grafcet.

A right click on the cube store allows you to access the list of variables.

 User manual

autoSIM3 132 ©Copyright 2011 SMC

 User manual

autoSIM3 133 ©Copyright 2011 SMC

Move the cursor over the action rectangle and left-click.

Repeat this operation to place the “cylinder extended” element on the
first transition and “cylinder retracted” on the second.

 User manual

autoSIM3 134 ©Copyright 2011 SMC

This is the final result:

You can now click on the “GO” button in the tool bar to launch the
application.

This complete example is in the “examples\Process
simulation\3D\physical engine” sub-directory with the name
“destacker.agn”.

Applying a behavior to an object
Click with the right button of the mouse on the object in the IRIS 3D
configuration window and select « Add … » from the menu. ».

Name of AUTOSIM variables
The name of AUTOSIM variables used in the behaviors are limited to the
following syntaxes:

Access to boolean variables

On: output « n », for example O8, O10,
/On: complement of the output « n », for example /O1, /O15,

 User manual

autoSIM3 135 ©Copyright 2011 SMC

In: input « n », for example 10,14,
/In: complement of the input « n », for example /I4, /I56,
Bn: bit « n », for example B100, B200,
/Bn: complement of bit « n », for example /B800, /B100,

The access to bits B is limited to a table of linear bits, a command #B
must be used to reserve bits (see the language manual),

Access to numeric variables

Mn: word « n », for example: M200, M300
Fn: float « n », for example: F200,F400

Adding a translation

Properties of a translation

Name

The first area is used to enter a generic name for the translation. This
name appears in the list of the IRIS 3D configuration window, it is only
used for comments and can be left blank.

 User manual

autoSIM3 136 ©Copyright 2011 SMC

Axis

Establishes the dimension to be applied to the translation.

Type

- without driving: no translation, this is used to make a translation

inoperable without needing to delete it (to run tests for example)/
- bistable driving: two boolean variables: the translation is driven by

two boolean variables: the first drives the translation in one
direction (from min to max), the second in the other direction (from
max to min).

State of the first
variable

State of the
second variable

Object

0 0 Immobile
1 0 Translation of min to

max
0 1 Translation of max to

min
1 1 Immobile

- monostable driving: a boolean variable drives the translation if the

variable is true

Variable state Object
1 Translation of min to max
0 Translation of max to min

- numeric driving: the position of the object on the designated axis is

equal to the specified numeric variable.
- The “…” button allows an “enhanced” mode to be defined for this

type of link:

 User manual

autoSIM3 137 ©Copyright 2011 SMC

The content of the numeric variable defines the object’s position.
If it is a word the position will be set at the value divided by 100;
if it is a long, it will be set at the value divided by 10000; if it is a
floating-point, it will be set at the value contained in the floating-
point. Min and max define the limits for these values.

The content of the variable defines the position between the min
and max values. 0 = min position, 10000 = max position.

The content of the variable gives a speed of displacement
ranging from -10000 to 10000.

The content of the variable gives a position to be reached as a
percentage of the stroke between min and max: 0 = min
position, 100 = max position. The acceleration and deceleration
are calculated automatically. The “percentage of movement
used...” parameter defines the length of the acceleration and
deceleration phases.

A

B

C

D

 User manual

autoSIM3 138 ©Copyright 2011 SMC

Allows a variable to be defined that will receive the position of
the object constantly. The variable can be a word, a long, a
floating-point or an input (in this case, this input and the next 16
inputs receive the position like an absolute encoder linked on
the inputs). The “value in gray code” checkbox allows this value
to be obtained like a gray encoder.

The “examples\Process simulation\3D\numerical pilotings” sub-
directory contains examples of these different modes.

- SIMULA: the object’s position on the designated axis is given by
the content of a variable managed by an SIMULA object. The “…”
button allows an enhanced mode to be defined for this type of link:

The variable associated to an SIMULA object defines the position
between min and max.

The variable associated to an SIMULA “motor” object modifies the
position according to the coefficient (it makes it possible to define
the relationship between the rotation speed of the SIMULA motor
and the speed with which the position varies).

The “examples\Process simulation\3D\SIMULA piloting” sub-
directory contains examples illustrating both these modes.

E

F

G

 User manual

autoSIM3 139 ©Copyright 2011 SMC

Amplitude and origin

The « Min » and « Max » areas establish the amplitude and origin of the
translation.

Speed

The stroke time establishes the speed for going from the min point to
max point (it is identical to the return speed).

Detection

This is used to set the sensors for the translations. The min and max
sensors manage the limits, the other 4 possible sensors can be used to
create intermediate positions.

Adding a rotation
The parameters are completely similar to the translations see chapter
Adding a translation. The angles are expressed in radians.

The object rotation center must be set for each object in the IRIS 3D
configuration window.

Adding a color change

Color change

 User manual

autoSIM3 140 ©Copyright 2011 SMC

Driveing of a color using a variable must refer to a boolean variable.

The “The same as object...” checkbox allows you to apply the same color
as another object.

Controlling a color by a variable must reference a Boolean variable.

Color control can also be performed with an SIMULA variable
(associated to an SIMULA indicator object, for example).

If the “do nothing if false” box is checked, no color is applied if the
variable’s status is false. This makes it possible to associate several
changes of color to a single object if more than 2 colors are needed.

The pull-down lists allow a texture to be selected instead of a color. To
have a texture shown in a pull-down list, place the (“.bmp” or “.jpg” file) in
the AUTOSIM project resources.

Multiple textures

It is possible to associate several textures that will be applied
automatically. To do this, associate several “Color modification” type
behaviors to a single object and document the “Time for multiple texture
mode” area with the time at the end of which the texture will be applied
automatically. The pre-defined “Conveyor Belt” object uses this
technique.

Adding a link
A link forces an object that this behavior is applied to, to follow the
movements of another object.

Links between objects

 User manual

autoSIM3 141 ©Copyright 2011 SMC

The link condition can be a boolean variable. The link is unconditional
(object always linked) if the condition is left blank.

Adding another behavior
This is used to use a sound associated to a condition, or to change a
boolean variable to 1 when the user clicks with the right or left side of the
mouse on the object the behavior is applied to.

Other behaviors

The elements of the “Sound” group make it possible to play a sound
associated to a condition.

The elements of the “User actions” group allow a Boolean variable to be
set to 1 when the user clicks with the right or left mouse button on the
object that the behavior applies to. The “A right-click on the object
anchors the camera” checkbox makes it possible to lock the camera
(which defines the display point of view in the IRIS 3D window) on the
object that the behavior applies to.

 User manual

autoSIM3 142 ©Copyright 2011 SMC

The elements of the “Collision” group make it possible to define a
collision test:

- either with one object in particular,
- or with objects having a particular color (a choice of 2 colors is

possible).

The “Variable” area can be documented with the name of a Boolean
variable that will be set to true if the collision test is true.

The “The object in collision becomes linked with the object if” checkbox
makes it possible to link the object that comes into collision with the
object to which the behavior is applied. A variable can condition this link.
This technique makes it possible to easily handle the simulation of a
clamp or suction cup.

The vector allows you to give a speed to an object that comes into
collision with the object to which the behavior is applied. The pre-defined
“Conveyor Belt” object uses this technique.

Physical engine

The physical engine makes it possible to handle gravity and the
interactions between objects so as to obtain a very realistic simulation.
For objects subject to gravity, only block, sphere or capsule shapes are
handled by the physical engine.

For each object you can define the type of handling used by the physical
engine:

“Not used”: the object is not handled by the physical engine: it is not
subject to gravity and does not interact with the other objects.

“Fixed”: an object handled by the physical engine that does not change
position but which interacts with the other objects: the housing of a
machine, for example.

 User manual

autoSIM3 143 ©Copyright 2011 SMC

“Use gravity”: a moving object handled by the physical engine, subject to
gravity and interacting with the other objects: a box moving on a
conveyor belt, for example. For this type of object, the mass, coefficients
of friction and restitution and the primary shape of the object (block,
sphere or capsule) have to be defined.

“Moving object”: a moving object handled by the physical engine, which
is not subject to gravity and which interacts with the other objects: a
cylinder rod pushing objects, for example For this type of object, the
coefficients of friction and restitution and the primary shape of the object
(block, sphere or capsule) have to be defined.

The “Apply physics” button allows the physical engine to be launched.
The “Automatic execution” checkbox automatically launches the physical
engine when the AUTOSIM PC executor is installed.

The “examples\Process simulation\3D\physical engine” sub-directory
contains examples illustrating the physical engine being used.

 User manual

autoSIM3 144 ©Copyright 2011 SMC

IRIS 3D example

� « Examples\Simulation PO\3D\Scharder.agn »

 User manual

autoSIM3 145 ©Copyright 2011 SMC

IRIS 3D is used to design simulation applications of 3D operating parts.
The objects must be created in a standard model maker and imported in
the AUTOSIM project resources. Behaviors are then applied to the
objects to create 3D animations.

 User manual

autoSIM3 146 ©Copyright 2011 SMC

Introduction to SIMULA

SIMULA is a pneumatic / electrical / hydraulic simulation module.

It can be used independently or in addition to the
AUTOSIM3 applications:

AUTOMATION
application

SCADA and 3D
process

simulation

Electrical,
pneumatic and

hydraulic
simualtion

 User manual

autoSIM3 147 ©Copyright 2011 SMC

Installation
To install SIMULA, install AUTOSIM. In options, be sure that « SIMULA »
is checked.

Practical experience

Let us do a simple example: cylinder + directional valve

Click with the right side of the mouse on « SIMULA »

Select “Add an SIMULA page”

 User manual

autoSIM3 148 ©Copyright 2011 SMC

Click with the right side of the mouse on the SIMULA sheet (right part)
then select “Add an object”

Select “double acting cylinder”, and then click on “Open”.

Repeat the steps above then add a 4/2 directional valve with monostable
hand control, a pressure source and a pneumatic exhaust.

 User manual

autoSIM3 149 ©Copyright 2011 SMC

You should obtain the following:

Create connections between the different components: Move the cursor
over the connections (light blue circles), press the left button of the
mouse then release it, move the cursor of the mouse to the connection
where the link must be connected, press the left button of the mouse
then release it.
Repeat the above step for each connection until the following result is
achieved:

Click on the “GO” button on the toolbar.

 User manual

autoSIM3 150 ©Copyright 2011 SMC

The cylinder shaft will come out. To make it go back in, click on the
manual control of the distributor.

While it is running, you can make changes, add objects, move them,
etc…

With SIMULA, it is not necessary to stop simulation!

To end the simulation, click again on “GO”.

 User manual

autoSIM3 151 ©Copyright 2011 SMC

Using SIMULA

Organizing applications

SIMULA applications are written on one or more sheets that appear in
the tree structure of AUTOSIM. The objects are then placed on the
sheet(s): an object = a component such as a cylinder or an electrical
contact.

Opening an existing application

The subdirectory « Examples / SIMULA » of the installation directory of
AUTOSIM contains examples done with SIMULA.

Creating an SIMULA sheet

To add an AUTOSIM sheet in the tree structure of a project, click with
the right button of the mouse on the “SIMULA” component in the tree
structure, then select “Add an SIMULA page”.

An SIMULA sheet is then created.

 User manual

autoSIM3 152 ©Copyright 2011 SMC

Adding an object onto an SIMULA sheet

Click with the right button of the mouse on the SIMULA sheet (shown
below on the right) and select “Add an object”.

The selection assistant for an object then appears:

The assistant shows a preview of the object in the bottom of the window.
To add the object onto the SIMULA sheet, click on “Open the object”.

 User manual

autoSIM3 153 ©Copyright 2011 SMC

Then move the mouse to place the object on the SIMULA sheet, press
the left button of the mouse and release it to leave the object.

You will obtain the following result:

 User manual

autoSIM3 154 ©Copyright 2011 SMC

Using the palette

1- Click on the object(s) in the palette (they appear as selected):
framed by black squares).

 User manual

autoSIM3 155 ©Copyright 2011 SMC

2- Click on the selected object(s), keep the button pressed and drag
the object onto the sheet.

Selecting one or more objects.

To select an object, move the cursor of the mouse over the object, press
the left button of the mouse and release it. Black squares appear around
the objects when they are selected:

To deselect an object, repeat the same step.

 User manual

autoSIM3 156 ©Copyright 2011 SMC

To select several objects: keep the SHIFT key of the keyboard pressed
and select several objects following the method described above.

To select several objects that are in the same area: press the left button
of the mouse, move the cursor of the mouse – a selection rectangle
emerges – release the left button of the mouse when the selection
rectangle is of the desired size.

To select an object that is under another object (several objects can be
superimposed), click several times with the left button of the mouse on
the objects covering each other: at each click, the selection moves from
one object to the other.

Selecting one or more objects

Move the cursor over one or more selected objects – the cursor of the
mouse takes on the appearance of four direction arrows – press the left
button of the mouse, move the objects by moving the mouse, release the
left button of the mouse when the desired position for the objects is
reached.

Deleting one or more objects

Move the cursor over one or several selected objects, press then release
the right button of the mouse and select “Delete”.

Changing the orientation of one or more objects

Move the cursor over one or more selected objects, press then release
the right button of the mouse and select the desired setting in the
“Rotation” menu.

Copying/cutting one or more objects to the clipboard

Move the cursor over one or more selected objects, press then release
the right button of the mouse and select “Copy” or “Paste”.

 User manual

autoSIM3 157 ©Copyright 2011 SMC

Pasting one or more objects from the clipboard

Press then release the right button of the mouse over an empty area of
the SIMULA sheet and select “Paste” in the menu.

Modifying object properties.

Move the cursor over one or more selected objects, press then release
the right button of the mouse and select “Properties”.

Example of the properties of a directional valve:

Exporting one or more objects

Move the cursor over one or more selected objects, press then release
the right button of the mouse and select “Export”.

The objects are exported to files with the extension .ASO.

By exporting to the subdirectory “SIMULA/lib” of the installation directory
of AUTOSIM, the new objects created appear in the SIMULA assistant.
The name of the file is the name shown in the assistant. If the name
must contain the character ‘/’, substitute this character with ‘@’ in the file
name.

 User manual

autoSIM3 158 ©Copyright 2011 SMC

Advanced functions

Interactions between objects
Interactions between SIMULA objects are realized either by visual links
defined on the sheets (a pneumatic or electrical line connecting two
objects, for example) or by a symbol. A symbol is a generic name, for
example “mini sensor”. A symbol may have any name whatsoever
except for key words reserved for the names of AUTOSIM variables (see
the AUTOSIM language reference manual) and symbols used in the
AUTOSIM symbol table.

Creating sensors associated with a cylinder

The mini and maxi end stops of a cylinder can be configured in the
properties of the cylinder. Example:

References for the symbols used can be found in the electrical contacts

 User manual

autoSIM3 159 ©Copyright 2011 SMC

For example:

The sensors can also be positioned directly on the SIMULA sheet. For
example:

The gray circle associated with the sensor objects must coincide with the
gray dot located on the piston or the cylinder shaft so that the sensor is
activated.

 User manual

autoSIM3 160 ©Copyright 2011 SMC

Interactions between SIMULA objects and the automaton
program

As seen above, the symbols used in the SIMULA objects allow
information to be exchanged between the objects. Where you want to
communicate solely between SIMULA objects, these symbols cannot be
the names of either AUTOSIM variables or AUTOSIM symbols. If you
use the name of an AUTOSIM variable or an AUTOSIM symbol, these
AUTOSIM objects reference the AUTOSIM variables and may therefore,
depending on the actual situation, read or write to the automaton
application’s variables.

Example:

 User manual

autoSIM3 161 ©Copyright 2011 SMC

Interactions between SIMULA objects and the IRIS 3D
operational unit simulator

In the IRIS 3D “Translations” and “Rotations” behaviors, the “SIMULA”
type allows you to reference the position of an SIMULA cylinder object
(see the example complet2.agn).

 User manual

autoSIM3 162 ©Copyright 2011 SMC

Interactions between SIMULA objects and the IRIS2D
supervision objects

How can a link be made between an IRIS2D pushbutton or switch and
an SIMULA pushbutton or switch?

 User manual

autoSIM3 163 ©Copyright 2011 SMC

How can a link be made between an SIMULA object and an IRIS2D
indicator light?

Comments: note that the SIMULA variables are considered as numerical
variables. It is therefore necessary to write “su=1”

 User manual

autoSIM3 164 ©Copyright 2011 SMC

Drag and drop from an SIMULA variable to an AUTOSIM sheet

This application is used, for example, in “Beginner” mode in order to be
able to “drag” the name of inputs or outputs from the automaton to the
AUTOSIM sheet.

To use this application, use a “Design”-type SIMULA object and
document the “Drag and drop” section with the text that could be
“dragged” from the SIMULA sheet to the AUTOSIM sheet.

 User manual

autoSIM3 165 ©Copyright 2011 SMC

User-definable objects

The user-definable object will allow you to create your own simulation
objects.

To create such an object, open the following object:

 User manual

autoSIM3 166 ©Copyright 2011 SMC

The object is shown as a grey square as long as it has not been
parameterized:

To access the object definition, open the object’s properties (select the
object, right-click over it then “Properties”) and click on “Define the
object”.

 User manual

autoSIM3 167 ©Copyright 2011 SMC

The “Object width” and “Object height” areas allow you to define the
dimensions of the object.

The “Designs”, “Program” and “Connections” areas allow you to define
the object’s design (its appearance), its behavior and the connections
respectively.

Designs

This area allows you to define the design of the object with the help of
the design primitive. The “Insert”, “Delete” and “Modify” buttons allow you
respectively to add or delete a primitive or to modify the parameters
associated with a primitive. The design primitives use this system of co-
ordinates:

Each primitive can receive one or more parameters.

Object

Vertical
axis

Horizontal axis
0/0

 User manual

autoSIM3 168 ©Copyright 2011 SMC

Note that the design primitives only define objects without rotation; the
design with rotation is automatically generated by SIMULA. The same is
true for the scale: primitives design at scale 1; SIMULA handles scaling
according to the zoom selected by the user.

By clicking on “Insert”, a dialogue box allows you to select a design
primitive.

List of design primitives

Drawing primitive
These primitives produce a drawing.

MOVE

Moves the pen (without drawing).

Parameters:

- horizontal position,
- vertical position.

LINE

Draws a line from the pen’s current position to the position indicated.

Parameters:

- horizontal position,
- vertical position.

RECT

Draws a rectangle.

Parameters:

- horizontal position of the top left corner,
- vertical position of the top left corner,
- horizontal position of the bottom right corner,
- vertical position of the bottom right corner.

 User manual

autoSIM3 169 ©Copyright 2011 SMC

ELLI

Draws an ellipse.

Parameters:

- horizontal position of the top left corner of the rectangle containing
the ellipse,

- vertical position of the top left corner of the rectangle containing the
ellipse,

- horizontal position of the bottom right corner of the rectangle
containing the ellipse,

- vertical position of the bottom right corner of the rectangle
containing the ellipse.

RREC

Draws a rectangle with rounded corners.

Parameters:

- horizontal position of the top left corner,
- vertical position of the top left corner,
- horizontal position of the bottom right corner,
- vertical position of the bottom right corner,
- horizontal rounded corner radius,
- vertical rounded corner radius,

TRIA

Draws a triangle.

Parameters:

- horizontal position of point 1,
- vertical position of point 1,
- horizontal position of point 2,
- vertical position of point 2,
- horizontal position of point 3,
- vertical position of point 3.

CHOR

Draws a chord (intersection of an ellipse and a straight line).

Parameters:

 User manual

autoSIM3 170 ©Copyright 2011 SMC

- horizontal position of the top left corner of the rectangle containing
the ellipse,

- vertical position of the top left corner of the rectangle containing the
ellipse,

- horizontal position of the bottom right corner of the rectangle
containing the ellipse,

- vertical position of the bottom right corner of the rectangle
containing the ellipse,

- horizontal position of the start of the line,
- vertical position of the start of the line,
- horizontal position of the end of the line,
- vertical position of the end of the line.

ARCE

Draws an arc of an ellipse (the part of an ellipse cut by a straight line).

Parameters:

- horizontal position of the top left corner of the rectangle containing
the ellipse,

- vertical position of the top left corner of the rectangle containing the
ellipse,

- horizontal position of the bottom right corner of the rectangle
containing the ellipse,

- vertical position of the bottom right corner of the rectangle
containing the ellipse,

- horizontal position of the start of the line,
- vertical position of the start of the line,
- horizontal position of the end of the line,
- vertical position of the end of the line.

TEXT

Draws a text box.

Parameters:

- horizontal position,
- vertical position,
- text.

 User manual

autoSIM3 171 ©Copyright 2011 SMC

Attribute primitives
These primitives modify the layout of the drawing primitives (the line or
fill color, for example).

BRUS

Modifies the fill color for figures or the background color for text boxes.

Parameter:

- color.

PENC

Modifies the color of lines or text.

Parameter:

- color.

FONT

Modifies the font of the text.

Other primitives

JUMP

Unconditional jump.

Parameter:

- label.

JPIF

Conditional jump.

Parameters:

- label,
- element 1,
- type of comparison,
- element 2.

(See the programming primitives below for more information).

 User manual

autoSIM3 172 ©Copyright 2011 SMC

DISP

Displays the state of a variable. Can be used for debugging an object by
displaying the value of a variable associated with the object.

Parameters:

- variable,
- horizontal position,
- vertical position.

Program

This area allows you to define the program governing the object’s
working. Each object has variables:

128 32-bit integer variables,
128 32-bit floating-point variables.

And also for each connection:

- a floating-point value on input,
- a floating-point value on output,
- an associated writing mode that can have the following values:

o 0: no writing has been done,
o 1: the “floating-point value on output” has been written,
o 2: a connection has been realized with the connection whose

number is in “floating-point value on output”,
o 3: locking (pneumatic or hydraulic plug).

The following internal integer variables are special:

125: contains 0 if dynamic visualization is active, 1 if not (useful in order
to have a different design for dynamic visualization and otherwise).

126: contains a value representing a user event: 0=no event, 1=left
mouse button released, 2=left mouse button pressed, 3=right mouse
button released, 4=right mouse button pressed.
127: contains the elapsed time in ms between 2 operations of the
program.

 User manual

autoSIM3 173 ©Copyright 2011 SMC

List of programming primitives

MOVV

Copies a constant or a variable into a variable.

Parameters:

- destination variable,
- source variable or constant.

ADDV

Adds a constant or variable to a constant or variable and places the
result in a variable.

Parameters:

- destination variable,
- source 1 variable or constant,
- source 2 variable or constant.

SUBV

Subtracts a constant or variable from a constant or variable and places
the result in a variable.

Parameters:

- destination variable,
- source 1 variable or constant,
- source 2 variable or constant.

MULV

Multiplies a constant or variable by a constant or variable and places the
result in a variable.

Parameters:

- destination variable,
- source 1 variable or constant,
- source 2 variable or constant.

 User manual

autoSIM3 174 ©Copyright 2011 SMC

DIVV

Divides a constant or variable by a constant or variable and places the
result in a variable.

Parameters:

- destination variable,
- source 1 variable or constant,
- source 2 variable or constant.

ORRV

Carries out a bit-by-bit OR between a constant or variable and a constant
or variable and places the result in a variable.

Parameters:

- destination variable,
- source 1 variable or constant,
- source 2 variable or constant.

ANDV

Carries out a bit-by-bit AND between a constant or variable and a
constant or variable and places the result in a variable.

Parameters:

- destination variable,
- source 1 variable or constant,
- source 2 variable or constant.

XORV

Carries out a bit-by-bit exclusive OR between a constant or variable and
a constant or variable and places the result in a variable.

Parameters:

- destination variable,
- source 1 variable or constant,
- source 2 variable or constant.

 User manual

autoSIM3 175 ©Copyright 2011 SMC

JUMP

Unconditional jump.

Parameter:

- label.

JPIF

Conditional jump.

Parameters:

- label,
- element 1,
- type of comparison,
- element 2.

Connections
Makes it possible to create the object’s connection points. By clicking on
“Insert”, the following dialogue box is opened:

For each connection, define the position and the technology. The
number shown against each connection must be used to access the
value in the object’s programming.

 User manual

autoSIM3 176 ©Copyright 2011 SMC

Example
The “Examples\SIMULA” sub-directory of the AUTOSIM installation
directory contains an example illustrating use of the user-definable
object: a contact:

 User manual

autoSIM3 177 ©Copyright 2011 SMC

Common elements
This chapter describes the common elements for all the languages
used in AUTOSIM.

Variables
The following types of variables are present:
� boolean type: the variable may have a true (1) or false (0) value.

� numeric type: the variable may have a numeric value, different from the

existing types: 16 bits variables, 32 bits and floating point.

� time delay type: structured type, it is a combination of a boolean and numeric

type.

Starting from version 6 the variable name syntax may be AUTOSIM's or the

syntax of IEC standard 1131-3.

Booleen variables
The following table provides a complete list of the Booleen variables
used

Type Syntax

AUTOSIM
Syntax
IEC 1131-3

Comments

Input I0
to I9999

%I0
to %I9999

May or may not correspond to physical input
(depending on the I/O configuration of the
target).

Output O0
to O9999

%Q0
to %Q9999

May or may not correspond to physical output
(depending on the I/O configuration of the
target).

System Bits U0
to U99

%M0
to %M99

For information on the system bits see the
manual on the environment.

User bits U100
to U9999

%M100
to %M9999

Internal bits for general use.

Grafcet
Steps

X0
to X9999

%X0
to %X9999

Grafcet step bits

Word bits M0#0
to M9999#15

%MW0:X0
à %MW9999:X15

Word bits: the number of bits is
expressed in decimals and is
included between 0 (lower weight
bits) and 15 (higher weight bits).

 User manual

autoSIM3 178 ©Copyright 2011 SMC

Numeric variables
The following table provides a complete list of the numeric variables.
Type Syntax

AUTOSIM
IEC Syntax

 1131-3

Comments

Counter C0
to C9999

%C0
to %C9999

16 bit counter, can be initialized,
increased, decreased and tested with
boolean languages without using
literal language.

System
Words

M0
to M199

%MW0
to %MW199

For information on the system words
see the manual on the environment.

User words M200
to M9999

%MW200
to %MW9999

16 bit words for general use.

Long
integer

L100
to L4998

%MD100
to %MD4998

Integer value of 32 bits

Float F100
to F4998

%MF100
to %MF4998

Real value of 32 bits (format IEEE).

Time delay
Time delay is a combined type which groups two boolean variables
(launch state, end state) and two numeric variables on 32 bits
(procedure and counter).

 User manual

autoSIM3 179 ©Copyright 2011 SMC

The following model shows a time chart of time delay functionality:

A time delay procedure value is between 0 ms and 4294967295 ms (a
little over 49 days)

The time delay procedure can be modified by the program (instruction
STA).
The time delay counter can be read by the program (instruction LDA).

launch state

1

0

end state

1

0

count value

0

 User manual

autoSIM3 180 ©Copyright 2011 SMC

Actions
Actions are used in:

� Grafcet language action rectangles,

� flow chart language action rectangles,

� ladder language coils.

Assignment of a boolean variable
The « Assignment » action syntax is:
«boolean variable»
Operation:
� if the action rectangle or coil command is in a true state then the variable is put

at 1 (true state),

� if the action rectangle or coil command is in a false state then the variable is

put at 1 (false state).

Truth table:

Command Variable state (result)

0 0
1 1

Example:

If step 10 is active then O0 takes the value of 1, if not O0 takes the
value 0.

Action

Action

Action

 User manual

autoSIM3 181 ©Copyright 2011 SMC

Various « Assignment » actions can be used for the same variable in
one program. In this case, the different commands are combined in
« Or » logic.

Example:

State of X10 State of
X50

State of
O5

0 0 0
1 0 1
0 1 1
1 1 1

Complement assignment of a boolean variable
The « Complement assignment » action syntax is:
«N boolean variable»
Operation:
� if the action rectangle or coil command is in a true state then the variable is

reset (false state),

� if the action rectangle or coil command is in a false state then the variable is

set at 1 (true state).

Truth table:

Command Variable state (result)

0 1
1 0

Example:

If step 20 is active, then U100 takes the value 0, if not U100 takes the
value 1.

 User manual

autoSIM3 182 ©Copyright 2011 SMC

Various « Complement assignment » actions can be used for the
same variable in one program. In this case, the different commands
are combined in « Or » logic.

Example:

State of
X100

State of X110 State of
O20

0 0 1
1 0 0
0 1 0
1 1 0

Setting a boolean variable to one
The « Set to one » syntax is:
«S boolean variable»
Operation:
� if the action rectangle or coil command is in a true state then the variable is set

to 1 (true state),

� if the action rectangle or coil command is in a false state then the state of the

variable is not modified.

Truth table:

Command Variable state (result)

0 unchanged
1 1

Example:

If step 5000 is active then O2 takes the value of 1, if not O2 keeps the
same state.

 User manual

autoSIM3 183 ©Copyright 2011 SMC

Resetting a boolean variable
The « Reset» action syntax is:
«R boolean variable»
Operation:
� if the action rectangle or coil command is in a true state then the variable is

reset (false state),

� if the action rectangle or coil command is in a false state then the variable state

is not modified.

Truth table:
Command Variable state (result)

0 unchanged
1 0

Example:

If step 6000 is active then O3 takes the value of 0, if not O3 keeps the
same state.

Inverting a boolean variable
The « Inversion » action syntax is:
«I boolean variable»
Operation:
� if the action rectangle or coil command is in a true state then the variable state

is inverted for each execution cycle,

� if the action rectangle or coil command is in a false state then variable state is

not modified.

 User manual

autoSIM3 184 ©Copyright 2011 SMC

Truth table:

Command Variable state (result)

0 unchanged
1 inverted

Example:

If step 7000 is active then the state of O4 is inverted, if not O4 keeps
the same state.

Resetting a counter, a word or a long
The « Reset a counter, word or long» syntax is:
«R counter or word»
Operation:
� if the action rectangle or coil command is in a true state then the counter, word

or long is reset,

� if the action rectangle or coil command is in a false state then the counter, word

or long is not modified.

Truth table:
Command Value of counter, word or long

(result)

0 unchanged
1 0

Example:

If step 100 is active then counter 25 is reset, if not C25 keeps the
same value.

 User manual

autoSIM3 185 ©Copyright 2011 SMC

Incrementing a counter, a word or a long
The «Increment a counter » action syntax is:
«+ counter, word or long»
Operation:
� if the action rectangle or coil command is in a true state then the counter, word

or long is incremented for each execution cycle,

� if the action rectangle or coil command is in a false state then the counter, word

or long is not modified.

Truth table:

Command Counter, word or long

value (result)

0 Unchanged
1 current value +1

Example:

If step 100 is active then counter 25 is incremented, if not then C25
keeps the same value.

Decrementing a counter, word or long
The « Decrement a counter » action syntax is:
«- counter, word or long»
Operation:
� if the action rectangle or coil command is in a true state then the counter, word

or long is decremented for each execution cycle,

� if the action rectangle or coil command is in a false state then the counter, word

or long is not modified..

Truth table:

Command Value or counter, word or long

(result)

0 unchanged
1 current value -1

Example:

 User manual

autoSIM3 186 ©Copyright 2011 SMC

If step 100 is active then counter 25 is decreased, if not C25 keeps the
same value.

Time delays
Time delays are considered as boolean variables and can be used
with « Assignment », « Complement assignment », « Set to one »,
« Reset », and « Invert ». The time delay order can be written after the
action. The syntax is::
« time delay(duration) »
By default the duration is expressed in tenths of seconds. The letter
« S » at the end of the duration indicates that it is expressed in
seconds.

Examples:

Step 10 launches a time delay of 2 seconds which remains active as
long as the step is. Step 20 sets a time delay of 6 seconds which
remains active while step 20 is deactivated.
The same time delay can be used by different places with the same
procedure and at different instants. In this case the time delay
procedure must only be indicated once.

Note: other syntaxes exist for time delays.

Interferences among the actions
Certain types of actions cannot be used at the same time on a
variable. The table below shows the combinations which cannot be
used:

 Assignment Complement

assignment

Set to one Reset Inversion

Assignment YES NO NO NO NO

Complement

assignment

NO YES NO NO NO

Set to one NO NO YES YES YES

Reset NO NO YES YES YES

Inversion NO NO YES YES YES

 User manual

autoSIM3 187 ©Copyright 2011 SMC

IEC1131-3 standard actions
The table below provides the IEC 1131-3 standard actions which can
be used with AUTOSIM V>=6 based on the AUTOSIM. V5 standard
syntax.

Name AUTOSIM

V>=6
Syntax

AUTOSIM V5
Syntax

 AUTOSIM
V>=6
Example

Equivalent
example
AUTOSIM V5

Not
memorized

No value No value

Not
memorized

N1 No value

Complement
not
memorized

N0 N

Reset

R R

Set to 1 S S

Limited in
time

LTn/durati
on

Non-
existent

Time delay DTn/durat

ion
Non-
existent

Pulse on
rising edge

P1 Non-
existent

Pulse on

falling edge

P0 Non-
existent

Memorized
and time
delay

SDTn/dur
ation

Non-
existent

Time delay
and
memorized

DSTn/dur
ation

Non-
existent

Memorized
limited in time

SLTn/dur
ation

Non-
existent

 User manual

autoSIM3 188 ©Copyright 2011 SMC

Multiple actions
Within the same action rectangle or coil, multiple actions can be
written by separating them with « , » (comma).
Example:

Multiple action rectangles (Grafcet and flow chart) or coils (ladder) can
be combined. See the chapters on the relative languages for more
information.

Literal code
Literal code can be entered in an action rectangle or coil.
The syntax is:
« { literal code } »

Multiple lines of literal language can be written in braces. A « , »
(comma) is also used here to separate them.

Example:

For more information see the chapters « Low level literal language »,
«Extended literal language » and «ST literal language».

Tests
Tests are used in:

� Grafcet language transitions,

� conditions based on Grafcet language action,

Test

Test

Test

 User manual

autoSIM3 189 ©Copyright 2011 SMC

� flow chart language tests,

� ladder language tests.

General form
A test is a boolean equation composed of one or n variables separated
by the operators « + » (or) or « . » (and).

Example of a test:
i0 (test input 0)

i0+i2 (test input 0 « or » input 2)

i10.i11 (test input 10 « and » input 11)

Test modifier
By default if only the name of one variable is specified, the test is
« equal to one» (true). Modifiers make it possible to test the
complement state, the rising edge and the falling edge.
� the character « / » placed before a variable tests the complement state,

� the character « u » or the character « �* » placed before a variable tests the

rising edge

� the character « d » or the character « �** » placed before a variable tests the

falling edge

Text modifiers can be applied to one variable or to an expression
between parentheses.

Examples:
� i0

/i1

/(i2+i3)

�(i2+(i4./i5))

* To obtain this character when editing a test press the [�] key.
** To obtain this character when editing a test press the [�] key.

Test

Test

 User manual

autoSIM3 190 ©Copyright 2011 SMC

Time delays
Four syntaxes are available for time delays.
In the first the time delay is activated in the action and the time delay is
simply mentioned in a test to check the end state:

For the others, everything is written in the test. The general form is:
« time delay /launch variable / duration »
or
« duration / launch variable / time delay »
or
« duration / launch variable »
In this case, a time delay is automatically attributed. The attribution
range is that of the automatic symbols.

By default the duration is expressed in tenths of seconds.

The duration can be expressed in days, hours, minutes, seconds,
milliseconds with the operators « d », « h », « m », « s » and « ms ».
For example: 1d30s = 1 day and 30 seconds.

Example using the second syntax:

Example using the normalized syntax:

Priority of boolean operators
By default the boolean operator «. » (AND) has a greater priority than
the operator «+» (OR). Parentheses can be used to set a different
priority.

Examples:
i0.(i1+i2)

((i0+i1).i2)+i5

Always true test
The syntax of an always true test is:
« » (no value) or « =1 »

Numeric variable test
Numeric variable tests must use the following syntax:

 User manual

autoSIM3 191 ©Copyright 2011 SMC

« numeric variable » « test type » « constant or numeric variable »

The test type can be:
� « = » equal,

� « ! » or « <> » different,

� « < » less than (not signed),

� « > » greater than (not signed),

� « << » less than (signed),

� « >> » greater than (signed),

� « <= » less than or equal to (not signed),

� « >= » greater than or equal to (not signed),

� « <<= » less than or equal to (signed),

� « >>= » greater than or equal to (signed).

A float can only appear with another float or a real constant.
A long can only appear with another long or a long constant.
A word or a counter can only appear with a word, a counter or a 16 bit
constant.
Real constants must be followed by the letter « R ».
Long constants (32 bits) must be followed by the letter « L ».
16 or 32 bit integer constants are written in decimal by default. They
can be written in hexadecimal (suffix « $ » or « 16# ») or in binary
(suffix « % » or « 2# »).
Numeric variable tests are used in equations like boolean variable
tests. They can be used with test modifiers as long as they are in
parentheses.

Examples:
m200=100

%mw1000=16#abcd

c10>20.c10<100

f200=f201

m200=m203

%md100=%md102

f200=3.14r

l200=$12345678L

m200<<-100

m200>>1000

%mw500<=12

 User manual

autoSIM3 192 ©Copyright 2011 SMC

/(m200=4)

�(m200=100)

/(l200=100000+l200=-100000)

Transitions on multiple lines
Transition text can be extended to multiple lines. The end of a
transition line must be an operator « . » or « + ». A combination of key
[CTRL] + [�] and [CTRL] + [�] makes it possible to move the cursor
from one line to another.

Use of symbols
Symbols make it possible to associate a text to a variable.
Symbols can be used with all the languages.
A symbol must be associated to one and only one variable.

Symbol syntax
The symbols are composed of:
� an optional character « _ » (low dash, generally associated with key [8] on the

keyboard) which indicates the beginning of the symbol,

� the name of the symbol,

� an optional character « _ » (low dash) which indicates the end of the symbol.

The characters « _ » enclosing the symbol names are optional. They
must be used if the symbol starts with a digit or an operator (+,-,
etc…).

Automatic symbols
It can be a nuisance to have to set the attribution in each symbol and a
variable, particularly if the precise attribution of a variable number is
not very important. Automatic symbols are a solution to this problem,
they are used to let the compiler automatically generate the attribution
of a symbol to a variable number. The type of variable to use is
provided in the name of the symbol.

Automatic symbol syntax
The syntax of automatic symbols is as follows:
« symbol name » %« variable type »

« variable type » can be:
I , O or Q, U or M, T, C, M or MW, L or MD, F or MF.

It is possible to reserve multiple variables for a symbol. This is useful
for setting tables. In this case the syntax is:
« symbol name » %« variable »« length »

 User manual

autoSIM3 193 ©Copyright 2011 SMC

«length » represents the number of variables to be reserved.

How does the compiler manage the automatic symbols ?
When starting to compile an application, the compiler cancels all the
automatic symbols located in the « .SYM » file of the application. Each
time the compiler finds an automatic symbol it creates a unique
attribution for the symbol based of the variable type specified in the
symbol name. The symbol that is then generated is written in the
« .SYM » file. If the same automatic symbol is present more than once
in an application, it refers to the same variable.

Range of variable attribution
By default, an attribution range is set for each type of variable:

Type Start End
I or %I 0 9999
O or %Q 0 9999
U or %M 100 9999
T or %T 0 9999
C or %C 0 9999
M or
%MW

200 9999

L or %MD 100 4998
F or %MF 100 4998

The attribution range can be changed for each type of variable by
using the compilation command #SR« type »=« start », « end »
« type » designates the type of variable, start and end and the new
limits to be used.
This command modifies the attribution of automatic variables for the
entire sheet where it is written and up to the next « #SR » command.

Fixed-address symbols
The syntax of the automatic symbols is:
« symbol name » %« variable name »

For example:
open valve%%q3

Designates a symbol that will be linked to the variable %Q3.

 User manual

autoSIM3 194 ©Copyright 2011 SMC

Examples
To better illustrate this manual we have developed some functional
examples with a model of a train as in the diagram below

MAQUETTE AT-850

voie 1

voie 3

voie 6

voie 7

voie 2 voie 4

1 4

2
3

5

voie 5

voie 8

S1I

T1I

S1D

T1D

S6I

T6I S6D

T6D

S7I

T7I

S7D

T7D

S2A

T2A

S2B

T2B

S5I

T5I

S5D

T5D

S8I

T8I

S8D

T8D

S4A

T4A

S4B

T4B

S3I

T3I

S3D

T3D

We have used I/O cards on a PC to pilot this model. The symbols set by the

constructor of the model have been saved.

 User manual

autoSIM3 195 ©Copyright 2011 SMC

The following symbol file was created:

 User manual

autoSIM3 196 ©Copyright 2011 SMC

Grafcet
AUTOSIM supports the following elements:

� divergences and convergences in « And» and in « Or »,

� destination and source steps,

� destination and source transitions,

� synchronization,

� setting Grafcets,

� memorization of Grafcets,

� fixing,

� macro-steps.

Simple Grafcet
Grafcet line writing involves combined steps and transitions.
The example below illustrates a Grafcet line:
Conditions:
The locomotive needs to leave on track 1 towards the right, up to the
end of the track. It returns in the opposite direction to the other end
and starts again.

 User manual

autoSIM3 197 ©Copyright 2011 SMC

Solution 1:

0 AV1

t1d

1 AV1 , DV1

t1i

� examples\grafcet\simple1.agn

Solution 2:

0 S AV1 ,R DV1

Aller

t1d

1 S AV1 ,S DV1

Retour

t1i

� example\grafcet\simple2.agn

The difference between the two solutions is that the first example uses
« Assignment » actions and the second uses « Set to one » and
«Reset ».
We change the conditions by setting a delay of 10 seconds when the
locomotive arrives to the right of track 1 and a delay of 4 seconds
when the locomotive arrives to the left of track 1.

 User manual

autoSIM3 198 ©Copyright 2011 SMC

Solution 1:

0 AV1

Aller

t1d

10 T0(10S)

t0

20 AV1 , DV1

Retour

t1i

30 T1(4S)

t1

� example\grafcet\simple3.agn
Solution 2:

0 AV1

Aller

t1d

10

10s/x10

20 AV1 , DV1

Retour

t1i

30

4s/x30

� example\grafcet\simple4.agn

 User manual

autoSIM3 199 ©Copyright 2011 SMC

The difference between example 3 and 4 is in the choice of syntax
used to set the time delays. In terms of operation the result is identical.

Divergence and convergence in « And »
Divergences in « And » can have n points. It is important to observe
the use of the function blocks:

A description of the use of divergences and convergences in « And »
follows.
Conditions:
We are going to use two locomotives: the first makes round trip
journeys on track 1, the second on track 3. The two locomotives are
synchronized (they wait at the end of the track).

Must be a [K]
block and not an

[L] block

Must be an [M]
block and not an

[L] block

Must be an [O]
block and not a

[P] block

Must be a [Q]
block and not a

[P] block

 User manual

autoSIM3 200 ©Copyright 2011 SMC

Solution 1:

40

=1

0 AV1 50 AV3

t1d t3i

10 60

=1

20 AV1 , DV1 70 AV3 , DV3

t1i t3d

30 80

=1

� example\grafcet\divergence et 1.agn

 User manual

autoSIM3 201 ©Copyright 2011 SMC

Solution 2:

t1d t3i

0 AV1 10 AV3

t1d . t3i

t1i t3d

20 AV1 , DV1 30 AV3 , DV3

t1i . t3d

� example\grafcet\divergence and 2.agn
The two solutions are equivalent in terms of operation. The second is a
more compact version which uses conditioned actions.

Divergence and convergence in « Or »
Divergences in « Or » can have n points. It is important to observe the
use of the function blocks:

or

or

 User manual

autoSIM3 202 ©Copyright 2011 SMC

Divergences in « Or » must connect on descending links. For example:

incorrect, the right drawing is:

If the width of the page prevents you from writing a large number of
divergences you can use the following type of structure:

The following is an example to illustrate the use of divergences and
convergences in « Or »:

Conditions:
Let's look at the conditions for the first example in the chapter:
roundtrip of a locomotive on track 1.

 User manual

autoSIM3 203 ©Copyright 2011 SMC

Solution:

0 AV1

� �t1d t1i

1 S DV1 2 R DV1

=1 =1

� example\grafcet\divergence or.agn

This Grafcet could be restated in a step using conditioned actions as in
this example:

� �t1d t1i

0 AV1 S DV1 R DV1

� example\grafcet\conditional action.agn

Destination and source steps, destination and source transitions
The principles are illustrated in the examples below:
Conditions:
Let's look at the second example in this chapter: round trip of a
locomotive on track 1 with a delay at the end of the track.
Solution:

 User manual

autoSIM3 204 ©Copyright 2011 SMC

0 S AV1

� �t1d t1i

10 R AV1 30 R AV1

t0/x10/10s t1/x30/4s

20 S AV1 S DV1 40 S AV1 R DV1

=1 =1

� example\grafcet\destination and source steps.agn

Multiple actions, conditioned actions
We have already used multiple and conditioned actions in this chapter.
The two principles are described in detail below.

As described in the chapter dedicated to the compiler, multiple actions
can be written in the same rectangle, by entering the character « , »
(comma) as a separator.

When a condition is added to an action rectangle, all of the actions
which continue in the rectangle are conditioned.

Multiple actions rectangles can be associated to a step.

another possibility:

Each of the rectangles can receive a different condition:

 User manual

autoSIM3 205 ©Copyright 2011 SMC

Conditional actions, event-based actions
To design a conditional or event-based action, place the cursor over
the action rectangle, right-click with the mouse and select “Conditional
action” or event-based action from the menu. To document the
condition on action, click on the element or or .

The IF (condition) syntax allows a condition on action to be written in
the action rectangle.
For example:
0 S%Q5 IF(%I4)

.

Actions on activation or deactivation of a step

The .and .symbols make it possible to specify that the
actions contained in a rectangle have to be performed once at the
activation or deactivation of the step respectively. For example:

20 + %C5

.
Increment counter 5 once at the activation of step 20.

Actions on transition crossing

The . and . symbols make it possible to define actions on
transition crossing. For example:

 User manual

autoSIM3 206 ©Copyright 2011 SMC

10

%i0

%Q0:=1

20

.
%Q0 will be activated on crossing the transition between steps 10 and
20.

Synchronization
Let's return to a previous example to illustrate Grafcets
synchronization.

Conditions:

Round trip of two locomotives on tracks 1 and 3 with a delay at the end
of the track.

This example was used with a divergence in « And ».

Solution 1:

10 AV1 100 AV3

t1d t3i

20 110

x110 x20

30 AV1 , DV1 120 AV3 , DV3

t1i t3d

40 130

x130 x40

� example\grafcet\synchro1.agn

 User manual

autoSIM3 207 ©Copyright 2011 SMC

Solution 2:

10 SX100,SX140

=1

20

x110.x150

30 SX120,SX160

=1

40

x130.x170

100 AV1 120 AV1 , DV1 140 AV3 160 AV3 , DV3

t1d t1i t3i t3d

110 130 150 170

x30 x10 x30 x10

� example\grafcet\synchro2.agn

The second is an excellent example of how to complicate the simplest
things for teaching purposes.

Grafcet setting
The compiler regroups the steps based on the links established within
them. To draw a Grafcet, just refer to one of the steps making up that
Grafcet.
It is also possible to draw all of the Grafcets present on a sheet by
mentioning the name of the sheet.

 User manual

autoSIM3 208 ©Copyright 2011 SMC

For example:

To draw a Grafcet we use Grafcet 200, Grafcet 201 or Grafcet 202.
Thus the Grafcet of all the steps becomes a structured type variable.
made up of n steps, each of these steps, being either active or idle.
As we have seen, AUTOSIM divides the steps into independent
groups. These groups can be regrouped, making it possible to
consider them as a single Grafcet. To regroup multiple Grafcets, the
compilation command « #G:g1,g2 » (command to be included in a
comment) must be used. This command regroups the Grafcets g1 and
g2. Remember that the designation of a Grafcet is affected by
mentioning the number of one of its steps.
Here is an example:
#G:105,200
this compilation command regroups the two Grafcets:

Note:multiple « #G » commands can be used to regroup more than
two Grafcets.
We are now going to describe the useable setting orders. They are
simply written inside the action rectangles as normal assignments.
They also support the operator S(set to one), R(reset), N(complement
assignment) and I(Inversion) as well as conditional actions.

Grafcet setting according to a list of active steps

Syntax:
« F<Grafcet>:{<list of active steps>} »
or
« F/<sheet name>:{<list of active steps>} »

 User manual

autoSIM3 209 ©Copyright 2011 SMC

The Grafcet/s thus designated will be set to the state established for
the list of active steps if they are within braces. If multiple steps need
to be active they need to be separated with a « , » (comma). If the
Grafcet/s need to be set to an idle state (not active step) then no step
should be present within the braces.

The number of steps may be preceded by an « X ». It is also possible
to associate a symbol to the name of a step.
Examples:
« F10:{0} »
set all the steps of Grafcet 10 to 0 except step 0 which will be set to 1.
« F0:{4,8,9,15} »
sets all the steps of Grafcet 0 to 0 except steps 4,8,9 and 15 which will
be set to 1.
« F/normal run:{} »
sets all the Grafcets on the « normal run » sheet to an idle state.

Memorization of a Grafcet state

Current state of a Grafcet:
Syntax:
« G<Grafcet>:<bit N°> »
or
« G/<sheet name>:<bit N°> »
This command memorizes the state of one or more Grafcets in a
series of bits. It is necessary to reserve a storage space for the state of
the Grafcet/s (one bit per step). These storage bits must be
consecutive. You must use the #B command to reserve a linear bit
space.

The step number designating the Grafcet can be preceded by an «
X » . It is also possible to associate a symbol to a step name. The bit
number can be preceded by « U » or « B ». A symbol can be
associated to the first bit of the state storage area.

Particular Grafcet state:
Syntax:
« G<Grafcet>:<Bit N°> {list of active steps} »
or

« G/<sheet name>:<Bit N°> {list of active steps} »
This command memorizes the state set for the list of active steps
applied to the specified Grafcets starting with the indicated bit. Also
here it is necessary to reserve a sufficient number of bits. If an idle
situation needs to be memorized then no steps should appear
between the braces.

 User manual

autoSIM3 210 ©Copyright 2011 SMC

The step number can be preceded by an « X » . It is also possible to
associate a symbol to a step name. The bit number can be preceded
by « U » or « B ». A symbol can be associated to the first bit of the
state storage area.
Examples:
« G0:100 »
memorizes the current state of Grafcet 0 starting from U100.
« G0:U200 »
memorizes the idle state of Grafcet 0 starting from U200.
« G10:150{1,2} »
memorizes the state of Grafcet 10, in which only steps 1 and 2 are
active, starting from U150.
« G/PRODUCTION:_SAVE PRODUCTION STATE_ »
memorizes the state of the Grafcets on the « PRODUCTION »
spreadsheet in the_SAVE PRODUCTION STATE_ variable.

Setting a Grafcet from a memorized state

Syntax:
« F<Grafcet>:<Bit N°> »
or
« F/<sheet name>:<Bit N°> »

Sets the Grafcet/s with a memorized state to start from the specified
bit.
The step number designated by the Grafcet can be preceded by an «
X » . It is also possible to associate a symbol to a step name. The bit
number can be preceded by « U » or « B ». A symbol can be
associated to the first bit of the state storage area.
Example:
« G0:100 »
memorizes the current state of Grafcet 0
« F0:100 »
and resets that state

Fixing a Grafcet

Syntax:
« F<Grafcet> »
or
« F/<sheet name> »
Fixes a Grafcet/s: no evolution of these is permitted.
Example:
« F100 »
fixes Grafcet 100

 User manual

autoSIM3 211 ©Copyright 2011 SMC

« F/production »
fixes the Grafcets on the « production » sheet
An illustration of setting is shown in the example below.

Conditions:
Let's look at a previous example: the round trip of two locomotives on
tracks 1 and 3 (this time with no delay between the locomotives) and
let's add an emergency stop. When the emergency stop is detected all
the outputs are cleared. When the emergency stop disappears the
program should start where it stopped.

 User manual

autoSIM3 212 ©Copyright 2011 SMC

Solution 1:
#B104 réserve 4 bits pour la mémorisation de l'état des Grafcets

locomotive 1 locomotive 2

10 AV1 30 AV3

t1d t3i

20 AV1 , DV1 40 AV3 , DV3

t1i t3d

gestion de l'arrêt d'urgence

1000

arret urgence

1010 G10:100,G30:102

=1

1020 F10:{},F30:{}

arret urgence

1030 F10:100,F30:102

=1

� example\grafcet\force1.agn

Note the use of command #B104 which makes it possible to reserve
four consecutive bits (U100 to U103) to memorize the state of the two
Grafcets. « _emergency stop_ » was associated to a bit (U1000). Its

 User manual

autoSIM3 213 ©Copyright 2011 SMC

state can thus be modified starting from the environment by clicking
below when the dynamic display is active.

Solution 2:

#B104 réserve 4 bits pour la mémorisation de l'état des Grafcets

locomotive 1 locomotive 2

10 AV1 30 AV3

t1d t3i

20 AV1 , DV1 40 AV3 , DV3

t1i t3d

#G:10,30

gestion de l'arrêt d'urgence

1000

arret urgence

1010 G10:100

=1

1020 F10:{}

arret urgence

1030 F10:100

=1

� example\grafcet\force2.agn

 User manual

autoSIM3 214 ©Copyright 2011 SMC

This second solution shows the use of the compilation command
« #G » which makes it possible to regroup the Grafcets with setting
command.

Grafcet forcings (60848 standard)
This standard defines the forcing orders in double action rectangles.
Forcing actions are executed when the associated condition, step or
logical diagram, is true. Conditions can be added on the double action
rectangles: condition on action, event-based action, action on
activation or deactivation.

Forcing a Grafcet according to a list of active steps

The syntax is:
G<grafcet to be forced>{<list of steps to be forced when true>}
The step(s) included in the list are forced to true, the other to false. An
empty list of steps causes all the steps to be forced to false.
Example:

G10{20,30}

.
Here 10 represents the Grafcet to be forced: Grafcet containing step
10.
Another example:

Gfolio à forcer{100,200,300}

.
Force all of the Grafcets on the sheet named “sheet to be forced”, with
steps 100, 200 and 300 being set to true and the others set to 0.

Forcing a Grafcet to its initial state

The syntax is:
G<grafcet to be forced>{INIT}
The Grafcet(s) are forced to their initial state
Example:

G10{INIT}

.

Freezing a Grafcet

The syntax is:
G<grafcet to freeze>{*}
Example:

G10{*}

.

 User manual

autoSIM3 215 ©Copyright 2011 SMC

Macro-steps
AUTOSIM implements macro-steps.
Additional information is given below:
A macro-step MS is the single representation of single group of steps
and transitions called « MS expansion».
A macro-step obeys the following rules:
� an MS expansion involves a special step called input step and a special step

called output step.

� the input step has the following property: complete clearing of a transition

upstream from the macro-step, it activates the input step of its expansion.

� the output step has the following property: it is involved in the validation of

transitions downstream from the macro-step.

� if outside the transitions upstream and downstream from the MS, there is no

input structural connection, on one side with a step or transition of the MS

expansion and on the other side, a step or a transition is not part of MS.

The use of a macro-step with AUTOSIM is set as follows:
� the expansion of a macro-step is a Grafcet if it is on a distinct sheet,

� the input step of the macro-step expansion must bear the number 0 or the

reference Exxx, (with xxx = any number),

� the output step of a macro-step expansion must bear the number 9999 or the

reference Sxxx, with xxx = any number,

� aside from these two requirements, a macro-step expansion can be any

Grafcet and as such can contain macro-steps.

0.0.0.1. How can a macro-step be set ?

The symbol must be used. To obtain this symbol, click on an
empty space on the sheet and select « Add …/Macro-step » from the
menu. To open the menu click on the bottom of the sheet with the right
side of the mouse.

To set a macro-step expansion, create a sheet, designate the
expansion and assign the sheet properties (by clicking with the right
side of the mouse on the name of the sheet in the browser). Record
the type of sheet on «Macro-step expansion » and the number of the
macro-step.

 User manual

autoSIM3 216 ©Copyright 2011 SMC

In run mode it is possible to display a macro-step expansion. To do so
place the cursor on the macro-step and click on the left side of the
mouse.

Notes:
� user steps and bits used in a macro-step expansion are local, this means that

they have no connection with the steps and bits of other Grafcets. All the other

types of variables do not have this characteristic: they are common for all

levels.

� if an area of bits needs to be used in an overall method it is necessary to state

this using the command « #B ».

� assignment of non-local variables for different levels or different expansions is

not managed by the system. In other words, it is necessary to use the

assignments « S » « R » or « I » to ensure that the system operates correctly..

Let's use one of our previous examples to illustrate the use of macro-
steps: a round trip voyage of a train on track 1 with a delay at the end
of the track. We have broken down the legs of the trip into two
separate macro-steps.

 User manual

autoSIM3 217 ©Copyright 2011 SMC

Solution:
macro-étape aller voie 1

E1

10 S AV1 ,R DV1

t1d

20 R AV1

t0/x20/10s

S1

macro-étape retour voie 1

E2

10 S AV1 ,S DV1

t1i

20 R AV1

t1/x20/4s

S2

 User manual

autoSIM3 218 ©Copyright 2011 SMC

0

=1

M1

=1

M2

=1

� example\grafcet\macro steps.agn

Encapsulating steps
Introduced in standard 60848, encapsulating steps are an evolution of
the ideas proposed in macro-steps.

Using encapsulating steps under AUTOSIM is defined as follows:
� the encapsulation is located in a separate sheet.

How do you define an encapsulating step?

The . or . symbol have to be used. To place this symbol,
right-click with the mouse on an empty part of the sheet and select
“Plus.../Encapsulating step” in the contextual menu.

How do you define an encapsulation?

To define the encapsulation, create a sheet, design the encapsulation
and modify the properties of the sheet (by right-clicking with the mouse
on the name of the sheet in the browser). Set the sheet type to
“Encapsulation” as well as the encapsulating step number.

The .symbol allows the initial state to be defined for an
encapsulation.

 User manual

autoSIM3 219 ©Copyright 2011 SMC

An encapsulation can be viewed in execution mode. To do this, you
need to place the cursor over the encapsulating step and left-click with
the mouse.

Notes:
� The User bits and steps used in an encapsulation are local, i.e. they are not

related to the bits and steps of other Grafcet levels. This is not the case for all

the other types of variable: they are common to all the levels. You can, for

example, use word bits as global variables.

� The encapsulated steps can be embedded.

� The Xn/Xm or %Xn/%Xm syntax allows you to reference step m contained in

the encapsulation associated to step n.

Example :

0

i0

1

i1

2

i2

.main program

 User manual

autoSIM3 220 ©Copyright 2011 SMC

0 o0

i10

10 o1

i11

20 o2

i12

.

� examples\grafcet\encapsulation 2.agn

Grafcet / Ladder and Grafcet / Flow chars links

Links can be defined with Grafcet step variables:

0 %x1 %i2 %Q5

%i0

1

%i1

.

 User manual

autoSIM3 221 ©Copyright 2011 SMC

GRAFCET++: the .block can be used to wire a transition like a
ladder circuit. The Grafcet steps can be wired as the start of a contact.

Grafcet / ladder example:

0 %i2 %Q0

%i0

10 %i3 %Q1

%i1

.

� examples\grafcet\grafcet++2.agn

Grafcet / flow chart example:

& voyant init

clignotant 05seconde

dcy

auto & ouvrir vanne

niveau haut niveau sécurité

.

� examples\grafcet\grafcet++.agn

Counters
We are going to use an example to describe the use of counters.
Conditions:
A locomotive must make 10 round trip journeys on track 1, stop for
fifteen seconds and start again.

 User manual

autoSIM3 222 ©Copyright 2011 SMC

Solution:

0 RC0

=1

1 AV1

t1d

2 AV1 , DV1

t1i

3 +C0

c0<10 c0=10

4

15s/x4

� Example\grafcet\compteur.agn

Gemma
AUTOSIM implements the Grafcet description of run mode
management in a Gemma form. The main feature is an editing method
open to the Grafcet mode. It is possible to go from the Grafcet editing
mode to the Gemma editing mode. The translation of a Gemma into a
Grafcet run mode management is therefore automatic and immediate..

 User manual

autoSIM3 223 ©Copyright 2011 SMC

P.C. HORS
ENERGIE

P.C. HORS
ENERGIE

remise en route arrêt mise en ou hors serv ice
f onctionnement normal

f onctionnement normal

essais et vérif ications

essais et vérif ications

PRODUCTION

PRODUCTION PRODUCTION

A1 <Arrêt dans état initial>
VOYANT INIT
ArrÛt dans Útat initial

A2 <Arrêt
demandé en
f in de
cycle>
FIN
ArrÛt du
Graf cet de
production

A3 <Arrêt
demandé
dans état
déterminé>

A4 <Arrêt obtenu>

A5 <Préparation pour remise en
route après déf aillance>

rien pour l'instant

A6 <Mise P.O. dans état initial>
AV1,_DV1_
ramÞne la locomotiv e Ó
gauche

A7 <Mise P.O. dans état
déterminé>

D1 <Marche ou arrêt en vue d'assurer la sécurité>
F_GFN_:{}
RAZ du Graf cet de production

D2 <Diagnostic et/ou
traitement de
déf aillance>

D3 <Production tout de même>

F1 <Production normale>
DEPART
Lancement du Graf cet de productio

F2 <Marches de
préparation>

F3 <Marches de
clôture>

F4 <Marches de vérif ication
dans le désordre>

F5 <Marches de vérif ication
dans l'ordre>

F6 <Marches de test>

PZ

fin de cycle obtenu

_
t1

i_

�_depart cycle_

=1

_
fin

 d
e

 c
y
c
le

_

/_arret urgence_

_
a

rre
t u

rg
e

n
c
e

_

Arrêt dans état initial #L"gemma2"

0 VOYANT INIT

gemma1.gr7

� depart cycle

exemple de la notice d'AUTOMGEN

(C)opyright 1997 IRAI

05/03/1994

Lancement du Grafcet de productio

1 DEPART

RAZ du Grafcet de production

fin de cycle 5 F GFN :{}

Arrêt du Grafcet de production

2 FIN arret urgence

fin de cycle obtenu

rien pour l'instant

6

=1

ramène la locomotive à gauche

7 AV1 , DV1

t1i

 User manual

autoSIM3 224 ©Copyright 2011 SMC

Creating a Gemma
To create gemma proceed as follows:
� click on « Sheet » on the browser with the right side of the mouse and select

the command « Add a new sheet»,

� from the list of sizes select « Gemma »,

� click on « OK »,

� use the right side of the mouse to click on the sheet name created on the

browser,

� select properties « Proprieties » from the menu,

� check « Display Gemma form ».

The window will contain a Gemma where all the links are gray. To
validate a rectangle or a connection click on it with the right side of the
mouse.
To edit the contents of a rectangle or the type of connection click on it
with the left side of the mouse.
The contents of Gemma rectangles will be placed in the Grafcet action
rectangles. The type of connection will be placed in the Grafcet
transitions.

ontent of Gemma rectangles
Gemma rectangles can receive any action used by Grafcet. Because
this involves setting a structure for managing run and stop modes, it is
a good idea to use the lowest level setting orders for Grafcet, see
chapter ¡Error! No se encuentra el origen de la referencia..

Obtaining a corresponding Grafcet
Check "Display Gemma form" again in sheet properties to call up a
Grafcet representation. It is always possible to call up a Gemma
representation because the Grafcet structure has not been changed.
The transitions, the action rectangle contents and comments can be
edited with automatic updating of Gemma.
Deleting blank spaces in Grafcet
It is possible that the obtained Grafcet occupies more space than
necessary on the page. The command « Change page layout » from
the « Tools » menu makes it possible to eliminate all the unused
spaces.

 User manual

autoSIM3 225 ©Copyright 2011 SMC

Printing Gemma
When editing is in Gemma mode use the « Print » command to print
the Gemma.

Exporting Gemma
Use the « Copy to EMF format » in the « Editing » menu to export a
Gemma to a vectorial form.

Example of Gemma
A description of how to use Gemma is below..
Conditions:
Imagine a panel with the following pushbuttons: « start cycle », « end
cycle » and « emergency stop » a light « INIT ».
The main program will consist of a locomotive making round trip journeys
on track 1.

 User manual

autoSIM3 226 ©Copyright 2011 SMC

Solution:
P.C. HORS
ENERGIE

P.C. HORS
ENERGIE

remise en route arrêt mise en ou hors serv ice
fonctionnement normal

fonctionnement normal

essais et vérif ications

essais et vérif ications

PRODUCTION

PRODUCTION PRODUCTION

A1 <Arrêt dans état initial>
VOYANT INIT
ArrÛt dans Útat initial

A2 <Arrêt
demandé en
f in de
cycle>
FIN
ArrÛt du
Grafcet de
production

A3 <Arrêt
demandé
dans état
déterminé>

A4 <Arrêt obtenu>

A5 <Préparation pour remise en
route après déf aillance>

rien pour l'instant

A6 <Mise P.O. dans état initial>
AV1,_DV1_
ramÞne la locomotive Ó
gauche

A7 <Mise P.O. dans état
déterminé>

D1 <Marche ou arrêt en vue d'assurer la sécurité>
F_GFN_:{}
RAZ du Graf cet de production

D2 <Diagnostic et/ou
traitement de
déf aillance>

D3 <Production tout de même>

F1 <Production normale>
DEPART
Lancement du Grafcet de productio

F2 <Marches de
préparation>

F3 <Marches de
clôture>

F4 <Marches de vérif ication
dans le désordre>

F5 <Marches de vérif ication
dans l'ordre>

F6 <Marches de test>

PZ

fin de cycle obtenu

_
t1

i_

�_depart cycle_

=1

_
fin

 d
e

 c
y
c
le

_

/_arret urgence_

_
a

rre
t u

rg
e

n
c
e

_

 User manual

autoSIM3 227 ©Copyright 2011 SMC

Arrêt dans état initial

0 VOYANT INIT

� depart cycle

Lancement du Grafcet de produ ctio

1 DEPART

RAZ du Grafcet de production

fin de cycle 5 F GFN :{}

Arrêt du Grafcet de productio n

2 FIN arret urgence

fin de cycle obtenu

rien pour l'instant

6

=1

ramène la locomotive à gauche

7 AV1 , DV1

t1i

arret urgence

22 F5:(5)

 (editing with Grafcet form)

 User manual

autoSIM3 228 ©Copyright 2011 SMC

� depart

100 AV1

t1d

110 AV1 , DV1

t1i . fin t1i . fin

120 FIN DE CYCLE OBTENU

fin de cycle obtenu

� example\gemma\gemma.agn

Ladder
Ladder language, also called contact model, is for graphically
describing boolean equations. To create a logical function « And » it is
necessary to write contacts in series. To write an « Or » function it is
necessary to write contacts in parallel.

« And » function

« Or » function

The content of contacts must comply with the syntax established for
the tests which is explained in the «Common elements» chapter of this
manual.
The content of the coils must comply with the syntax established for
the actions which is also explained in the «Common elements »
chapter of this manual.

 User manual

autoSIM3 229 ©Copyright 2011 SMC

Example of Ladder
Let's start with the simplest example.
Conditions:
Round trip of a locomotive on track 1.

Solution 1:

AV1

� t1i R DV1

� t1d S DV1

� Example\ladder\ladder1.agn

Solution 2:

AV1

t1i dv1 DV1

t1d

� Example\ladder\ladder2.agn

The second solution is identical from an operational point of view. It is
used to display the use of a self-controlled variable.

Let's make our example more complex.
Conditions:
The locomotive must stop for 10 seconds to the right of track 1 and 4
seconds to the left.

 User manual

autoSIM3 230 ©Copyright 2011 SMC

Solution:
t1d T0(10S)

S DV1

t1i T1(4S)

R DV1

t1i t1d AV1

t0

t1

� Example\ladder\ladder3.agn

A final example, even a little more complicated
Conditions:
Again a locomotive which makes round trips on track 1. For each 10
round trips it must stop for 15 seconds.

Solution:

b0 RC0

t0

t1d dv1 +C0

S DV1

t1i R DV1

c0<10 AV1

t0

c0=10 T0(15S)

� Example\ladder\ladder4.agn

Flow chart
AUTOSIM implements flow chart language in the following way:
� use of a special block called « assignment block », this block separates the

action area and test area, it has the following form and is associated with

key [0] (zero),

� it uses the functions« No », « And » and « Or »,

 User manual

autoSIM3 231 ©Copyright 2011 SMC

� it uses action rectangles to the right of the action block.

Flow chart language is used for graphically writing boolean equations.
The test content must comply with the syntax established in the «
Common elements » chapter in this manual.
The content of action rectangles must comply with the syntax for
actions, also described in the « Common elements » chapter of this
manual.

Drawing flow charts

Number of input of functions « And » and « Or »

The « And » and « Or » functions are respectively composed of a

block (key [2]) or a block (key [3]), and possible blocks

(key [4]) for adding inputs to blocks and finally block (key [5]).
The functions « And » and « Or » thus involve a minimum of two
inputs..

Chaining the functions

The functions can be chained.

Affection block
for separating
the test area
from the action

area

 « Test » Area

 « Action » area

 User manual

autoSIM3 232 ©Copyright 2011 SMC

Multiple actions

Multiple action rectangles can be associated to a flow chart after the
assignment block..

or

Example of a flow chart
Let's start with the simplest example:
Conditions:
Roundtrip of a locomotive on track 1.
Solution 1:

=1 AV1

� t1d S DV1

� t1i R DV1

� Example\flow chart\logigramme1.agn

Solution 2:

=1 AV1

t1d DV1

dv1 &

t1i O

� Example\flow chart\logigramme2.agn

The second solution is identical from an operational point of view. It is
used to display the use of a self-controlled variable.

Let's make the example more complex.
Conditions:

 User manual

autoSIM3 233 ©Copyright 2011 SMC

The locomotive must stop for 10 seconds to the right of track 1 and 4
seconds to the left.
Solution:

t1d T0(10S)

S DV1

t1i T1(4S)

R DV1

t0 AV1

t1

O &

O

� Example\flow chart\logigramme3.agn

Note the reuse of the «And» block in the lower part of the example
towards the inputs « _t1d_ » and « _t1i_ ». This prevents having to
write the two tests a second time.
A final example a bit more complicated.
Conditions:
Again a locomotive which makes round trips on track 1. Each 10 round
trips it must stop for 15 seconds.

 User manual

autoSIM3 234 ©Copyright 2011 SMC

Solution:
b0 RC0

t0

t1d & +C0

dv1 O S DV1

t1i R DV1

c0<10 AV1

t0

c0=10 T0(15S)

� Example\flow chart\logigramme4.agn

Literal languages
This chapter describes the use of the three forms of literal language
which are available in AUTOSIM:
� low level literal language,

� extended literal language,

� IEC 1131-3 standard ST literal language

How is a literal language used?
Literal language can be used in the following forms:
� code files associated to an action (Grafcet, Ladder, flow chart),

� code boxes associated to an action (Grafcet, flow chart),

� literal code in action rectangle or coil (Grafcet, Ladder, flow chart),

� code boxes used in the form of an organizational chart (see the

«Organizational chart » chapter),

� code files which support the function block functionality (see the « Function

blocks » chapter),

� code files which support a macro-instruction functionality see chapter Macro-

instruction.

 User manual

autoSIM3 235 ©Copyright 2011 SMC

Code box associated with a step or flow chart

A code box associated with an action is for being able to write lines of
literal language on an application page.

Examples:

The code used above is scanned as long as the action is true.
It is possible to use the action rectangles and code boxes together.

Example:

Literal code in an action rectangle or coil

The characters « { » and « } » are used to directly enter instructions in
literal language into an action rectangle (Grafcet and flow chart
languages). The character« , » (comma) is used as a separator if
multiple instructions are present in « { » and « } ».
This type of entry can be used with conditional orders.

Examples:

 User manual

autoSIM3 236 ©Copyright 2011 SMC

Setting a code box
To create a code box, follow the steps below:
� click on an empty space on the sheet with the right side of the mouse,

� select « Add … / Code box » from the menu,

� click on the edge of the code box to edit its contents.

To exit the code box after editing click on [Enter] or click outside it.

Low level literal language
This chapter describes the use of low level literal language. This
language is an intermediate code between the evolved languages of
Grafcet, flow chart, ladder, organizational chart, function block,
extended literal, ST literal and executable languages. It is also know
as pivot code. Post-processors translate low level literal language into
executable code for the PC, automate or microprocessor card.
Literal language can also be used for an application in order to effect
various boolean, numeric or algebraic operations.
Low level literal language is an assembler type language. It uses the
idea of an accumulator for numeric treatment.
Extended literal language and ST literal language described in the
following chapters, offer a simplified and higher level alternative for
writing programs in literal language.
The general syntax for a line of low level literal language is:
«action » [[[« Test »] « Test »]...]
The actions and tests of low level literal language are represented by
mnemonics formed of three letters. An instruction is always followed
by an expression: variable, constant etc.
A line is composed of a single action and possibly a test. If a line only
includes an action, then the instruction is always executed.

Variables

The variables used are the same as those described in the « Common
elements » chapter.

Accumulators

Some instructions use an accumulator. The accumulators are internal
registers which execute the final program and make it possible to
temporarily store values.
There are three accumulators: a 16 bit accumulator known as AAA, a
32 bit accumulator known as AAL and a float accumulator known as
AAF.

 User manual

autoSIM3 237 ©Copyright 2011 SMC

Flags

Flags are boolean variables which are positioned based on the result
of numeric operations.
There are four permanent flags to test the result of a calculation.
These four indicators are:
� carry indicator C:it indicates if an operations has generated a carry figure (1) or

not (0),

� zero indicator Z:it indicates if an operations has generated a nil result (1) or not

nil (0),

� sign indicator S: it indicates if an operation has generated a negative result (1)

or positive one (0),

� overflow indicator O: it indicates if an operation has generated an overflow (1).

Addressing modes

Low level literal language has 5 addressing modes. An addressing
mode is a characteristic associated to each literal language instruction.
Addressing modes used appear below:

TYPE SYNTAX EXAMPLE
Immediate 16 bits {constant} 100
Immediate 32 bits {constant}L 100000L
Immediate float {constant}R 3.14R
Absolute {variable} {variable reference} O540
16 bit accumulator AAA AAA
32 bit accumulator AAL AAL
Float accumulator AAF AAF
Indirect {variable}{(word reference)} O(220)
Label :{label name}: :loop

Thus an instruction has two characteristics: the type of variable and
the addressing mode. Certain instructions support or do not support
certain addressing modes and certain variable types. For example, an
instruction may only apply to two words and not to other types of
variables.

Note: Variables X and U can not be associated to an indirect address
due to the non-linear nature of their assignments. If it is necessary to
access a U variable table then a command #B must be used to make a
table of linear bits.

 User manual

autoSIM3 238 ©Copyright 2011 SMC

Tests

Tests that can be associated to instructions are composed of a
mnemonic, a type of test and a variable.
Test mnemonics are used to set combination tests on multiple
variables (and, or). If a test is composed of a single variable, an AND
operator needs to be associated to it.
There are only three test mnemonics:
AND and
ORR or
EOR end or
Here are some examples of equivalencies in boolean equations and
low level literal language:

o0=i1 : and i1

o0=i1.i2 : and i1 and i2

o0=i1+i2 : orr i1 eor i2

o0=i1+i2+i3+i4 : orr i1 orr i2 orr i3 eor i4

o0=(i1+i2).(i3+i4) : orr i1 eor i2 orr i3 eor i4

o0=i1.(i2+i3+i4) : and i1 orr i2 orr i3 eor i4

o0=(i1.i2)+(i3.i4) ; impossible to translate directly,

; intermediate variables

; must be used:

equ u100 and i1 and i2

 equ u101 and i3 and i4

 equ o0 orr u100 eor u101

Test modifiers make it possible to test things other than the truth of a
variable:
� / no

� # rising edge

� * falling edge

� @ immediate state

Notes:
� boolean variables are updated after each execution cycle. In other words, if a

binary variable is positioned at a state during a cycle, then its new state will be

detected during the following cycle. The text modifier @ makes it possible to

obtain the real state of a boolean variable without waiting for the following

cycle.

� test modifiers cannot be used with numeric tests.

 User manual

autoSIM3 239 ©Copyright 2011 SMC

Examples:
set o100

equ o0 and @o100 ; true test of the first cycle

equ o1 and o100 ; true test at the second cycle

Only two addressing modes are available for tests: absolute and
indirect
A test for counters, words, longs and floating points is available:

Syntax:
« {variable} {=, !, <, >, << , >>} {constant or variable} »

= equal,
! different,
< less than not signed,
> greater than not signed,
<< less than signed,
>> greater than signed,
By default, constants are written in decimals. The suffixes « $ » and
« % » are used for writing in hexadecimal or binary. The quotation
marks are for writing in ASCII.
32 bit constants must be followed by the letter « L ».
Real constants must be followed by the letter « R ».
A word or a counter can be compared to a word, a counter of a 16 bit
constant..
A long can be compared to a long or a 32 bit constant.
A float can be compared to a float or a real constant.

Examples:
and c0>100 and m225=10

orr m200=m201 eor m202=m203 and f100=f101 and f200<f203

orr m200<<-100 eor m200>>200

and f200=3.14r

and l200=$12345678L

and m200=%1111111100000000

Comments

Comments need to start with the character « ; » (semi-colon), all the
characters after it are ignored.

 User manual

autoSIM3 240 ©Copyright 2011 SMC

Numbering base

The values (variable references or constants) can be written in
decimal, hexadecimal, binary or ASCII.
The following syntax must be applied for 16 bit constants:
� decimal:possibly the character « - » plus 1 to 5 digits « 0123456789 »,

� hexadecimal: the prefix « $ » or « 16# » followed by 1 to 4 digits

« 0123456789ABCDEF »,

� binary: the prefix « % » or « 2# » followed by 1 to 16 digits « 01 »,

� ASCII: the character « " » followed by 1 or 2 characters followed by « " ».

The following syntax must be applied for 32 bit constants:
� Decimal: possibly the character « - » plus 1 to 10 digits « 0123456789 »,

� Hexadecimal: the prefix « $ » or « 16# » followed by 1 to 8 digits

« 0123456789ABCDEF »,

� Binary: the prefix « % » or « 2# » followed by 1 to 32 digits « 01 »,

� ASCII: the character « " » followed by 1 to 4 characters followed by « " ».

The following syntax must be applied for real constants:
[-] i [[.d] Esx]
i is the whole part
of a decimal part
s possible sign of an exponent
x possible exponent

Presettings

A presetting is used to fix the value of a variable before starting the
application.
The variables T or %T, M or %MW, L or %MD and F or %F can be
preset.

The syntax is as follows:
« $(variable)=constant{,constant{,constant...}} »

For time delays the variable must be written in decimal and be
included between 0 and 65535.
For words the following syntax must be used:

 User manual

autoSIM3 241 ©Copyright 2011 SMC

� Decimal: possibly the character « - » plus 1 to 5 digits « 0123456789 »,

� Hexadecimal: the prefix « $ » or « 16# » followed by 1 to 4 digits

« 0123456789ABCDEF »,

� Binary: the prefix « % » or « 2# » followed by 1 to 16 digits « 01 »,

� ASCII: (two characters per word) the character « " » followed by n

characters followed by « " »,

� ASCII: (one character per word) the character « ’ » followed by n

characters followed by « ’ ».

For longs the following syntax must be used:
� Decimal: possible the character « - » plus 1 to 10 digits « 0123456789 »,

� Hexadecimal: the prefix « $ » or « 16# » followed by 1 to 8 digits

« 0123456789ABCDEF »,

� Binary: the character « % » or « 2# » followed by 1 to 32 digits « 01 »,

� ASCII: (four characters per long) the character « " » followed by n characters

followed by « " »,

� ASCII: (one character per long) the character « ’ » followed by n characters

followed by « ’ »

For floats the value must be written in the following form:

[-] i [[.d] Esx]
i is the whole part
d a possible decimal part
s a possible exponent sign
x a possible exponent

Examples:

$t25=100

fixes the time delay order 25 at 10 s
$MW200=100,200,300,400

places the values 100,200,300,400 in the words 200, 201, 202, 203
$m200="ABCDEF"

places the string « ABCDEF » starting from m200 (« AB » in m200,
« CD » in m201, « EF » in m202)
$m200=‘ABCDEF’

 User manual

autoSIM3 242 ©Copyright 2011 SMC

places the string « ABCDEF » starting from m200, each word receives
a character
$f1000=3.14

places the value 3,14 in f1000

$%mf100=5.1E-15

places the value 5,1 * 10 exponent -15 in %mf100
$l200=16#12345678

places the value 12345678 (hexa) in the long l200

It is easier to write text in the presettings.

Example:
$m200=" Stop the gate N°10 "

Places the message starting from word 200 by placing two characters
in each word.
$m400=‘ Motor fault ‘

Places the message starting from word 400 by placing a character in
the byte of lower weights of each word, the byte of higher weights
contains 0.

The syntax « $...= » is used to continue a table of presettings after the
previous one.

For example:

#$m200=1,2,3,4,5

#$...=6,7,8,9

Place the variables 1 to 9 in the words m200 à m208.

Presettings can be written in the same manner as low level literal
language or in a command on a sheet. In this case, the presetting
starts with the character « # ».
Example of a presetting written in a code box:

Example of a presetting written in a command:

 User manual

autoSIM3 243 ©Copyright 2011 SMC

Indirect addressing

Indirect addressing is used to effect an operation on a variable with an
index..
These are M variables (words) which are used as an index
Syntax:
« variable (index) »

Example:
lda 10 ; load 10 in the accumulator

sta m200 ; enter in the word 200

set o(200) ; set to one the output indicated by the word 200 (o10)

Address of a variable

The character « ? » is used to specify the address of a variable.
Example:
lda ?o10 ; enters the value 10 in the accumulator

This syntax is primarily of interest if symbols are used.

Example:
lda ?_gate_ ; enters the variable number in the accumulator

; associated to symbol « _gate_ »

This syntax can also be used in presettings to create variable address
tables..

Example:
$m200=?_gate1_,?_gate2_,?_gate3_

Jumps and labels

Jumps must be referred to a label. Label syntax is:
«:label name: »
Example:
jmp:next:

...

:next:

Function list by type

Boolean functions

SET set to one
RES reset
INV inversion
EQU equivalence
NEQ non-equivalence

 User manual

autoSIM3 244 ©Copyright 2011 SMC

Loading and storage functions on integers and floats

LDA load
STA storage

Arithmetic functions on integers and floats

ADA addition
SBA subtraction
MLA multiplication
DVA division
CPA comparison

Arithmetic functions on floats

ABS absolute value
SQR square root

Access functions for PC input/output ports

AIN access input
AOU access output

Access functions for PC memory

ATM input address memory
MTA output address memory

Binary functions on integers

ANA and bit to bit
ORA or bit to bit
XRA exclusive or bit to bit
TSA test bit to bit
SET set all bits to one
RES reset all bits
RRA shift to the right
RLA shift to the left

Other functions on integers

INC incrementation
DEC decrementation

Conversion functions

ATB integers to booleans
BTA booleans to integers
FTI float to integer
ITF integer to float
LTI 32 bit integer to 16 bit integer

 User manual

autoSIM3 245 ©Copyright 2011 SMC

ITL 16 bit integer to 32 bit integer

Trigonometric functions

SIN sine
COS cosine
TAN tangent
ASI arc sine
ACO arc cosine
ATA arc tangent

Connection functions

JMP jump
JSR jump to sub routine
RET return from sub routine

Test functions

RFZ zero result flag
RFS sign flag
RFO overflow flag
RFC carry flag

Asynchronous access functions to inputs outputs

RIN read inputs
WOU write outputs

Information contained in the function list

The following are provided for each instruction:
� Name: mnemonic.

� Function: a description of the function created by the instruction.

� Variables: the types of variables used with the instruction

� Addressing: the types of addressing used

� Also see: the other instructions related to the mnemonic.

� Example: a example of the use.

The post-processors which generate construction language are
subject to certain limitations. See the information on these post-
processors for details on these limitations.

 User manual

autoSIM3 246 ©Copyright 2011 SMC

AABBSS

Name : ABS - abs accumulator

Function : calculate the absolute value of the floating accumulator

Variables : none

Addressing : accumulator

Also see : SQR

Example :

 lda f200

 abs aaf

 sta f201

 ; leaves f201 in the absolute value of f200

 User manual

autoSIM3 247 ©Copyright 2011 SMC

AACCOO

Name : ACO – accumulator arc cosine

Function : calculate the arc cosine value of the floating-point
accumulator

Variables : none

Addressing : accumulator

Also see : COS, SIN, TAN, ASI, ATA

Example: :

 lda f200

 aco aaf

 sta f201

 ; leave the value of the arc cosine of f200 in f201

 User manual

autoSIM3 248 ©Copyright 2011 SMC

AADDAA

Name : ADA - adds accumulator

Function : adds a value to the accumulator

Variables : M or %MW, L or %MD, F or %MF

Addressing : absolute, indirect, immediate

Also see : SBA

Example :

 ada 200

 ; adds 200 to the 16 bit accumulator

 ada f124

 ; adds the content of f124 to the float accumulator

 ada l200

 ; adds the content of l200 to the 32 bit accumulator

 ada 200L

 ; adds 200 to the 32 bit accumulator

 ada 3.14R

 ; adds 3.14 to the float accumulator

 User manual

autoSIM3 249 ©Copyright 2011 SMC

AAIINN

Name : AIN - accumulator input

Function : reads an input port (8 bits) and stores in

 the lower part of the 16 bit accumulator ;

reads a 16 bit input port and stores in the 16 bit accumulator
(in this case the port address must be written in the form of a
32 bit constant)

 only useable with PC compiler

Variables : M or %MW

Addressing : indirect, immediate

Also see : AOU

Example :

 ain $3f8

; reads port $3f8 (8 bits)

ain $3f8l

; reads port $3f8 (16 bits)

 User manual

autoSIM3 250 ©Copyright 2011 SMC

AANNAA

Name : ANA - and accumulator

Function : effects an AND logic in the 16 bit accumulator

 and a word or a constant or the 32 bit accumulator and

 a long or a constant

Variables : M or %MW, L or %MD

Addressing : absolute, indirect, immediate

Also see : ORA, XRA

Example :

 ana %1111111100000000

 ; masks the 8 bits of lower weight of

 ; the 16 bit accumulator

 ana $ffff0000L

 ; masks the 16 bits of lower weight of the 32 bit accumulator

 User manual

autoSIM3 251 ©Copyright 2011 SMC

AAOOUU

Name : AOU - accumulator output

Function : transfers the lower part (8 bits) of the 16 bit accumulator

 on an output port ;

 transfers the 16 bits of the 16 bit accumulator

 on an output port (in this case the port address must be

written in the form of a 32 bit constant)

 only useable with PC compiler

Variables : M or %MW

Addressing : indirect, immediate

Also see : AIN

Example :

 lda "A"

 aou $3f8

 ; places the character« A » on output port $3f8

 lda $3f8

 sta m200

 lda "z"

 aou m(200)

 ; places character « z » on output port $3f8

 lda $1234

 aou $300l

 ; places the 16 bit value 1234 on output port $300

 User manual

autoSIM3 252 ©Copyright 2011 SMC

AASSII

Name : ASI – accumulator arc sine

Function : calculate the arc sine value of the floating-point accumulator

Variables : none

Addressing : accumulator

Also see : COS, SIN, TAN, ACO, ATA

Example: :

 lda f200

 asi aaf

 sta f201

 ; leave the value of the arc sine of f200 in f201

 User manual

autoSIM3 253 ©Copyright 2011 SMC

AATTAA

Name : ATA – accumulator arc tangent

Function : calculate the arc tangent value of the floating-point
accumulator

Variables : none

Addressing : accumulator

Also see : COS, SIN, TAN, ACO, ASI

Example: :

 lda f200

 ata aaf

 sta f201

 ; leave the value of the arc tangent of f200 in f201

 User manual

autoSIM3 254 ©Copyright 2011 SMC

AATTBB

Name : ATB - accumulator to bit

Function : transfers the 16 bits of the 16 bit accumulator

 towards the subsequent 16 boolean variables ; the

 the lower weight bit correspond to the first

 boolean variable

Variables : I or %I, O or %Q, B or %M, T or %T, U*

Addressing : absolute

Also see : BTA

Example :

 lda m200

 atb o0

 ; recopies the 16 bits of m200 in variables
 ; o0 to o15

* Note: to be able to use the U bits with this function it is necessary to create a linear table of bits

using command #B.

 User manual

autoSIM3 255 ©Copyright 2011 SMC

AATTMM

Name : ATM - accumulator to memory

Function : transfers the 16 bit accumulator to a memory

 address; the word or specified constant

 defines the memory address offset

 to reach, the word m0 must be loaded with the

 segment value of the memory address to reach

 only useable with PC compiler

Variables : M or %MW

Addressing : indirect, immediate

Also see : MTA

Example :

 lda $b800

 sta m0

 lda 64258

 atm $10

 ; places the value 64258 at address $b800:$0010

 User manual

autoSIM3 256 ©Copyright 2011 SMC

BBTTAA

Name : BTA - bit to accumulator

Function : transfers the subsequent 16 boolean variables

 towards the 16 bits of the 16 bit accumulator ;

 the lower weight bit corresponds to the first

boolean variable

Variables : I or %I, O or %Q, B or %M, T or %T, U*

Addressing : absolute

Also see : ATB

Example :

 bta i0

 sta m200

 ; recopies the 16 inputs i0 to i15 in the word m200

* Note: to be able to use the U bits with this function it is necessary to create a linear table of bits

using command #B.

 User manual

autoSIM3 257 ©Copyright 2011 SMC

CCOOSS

Name : COS – accumulator cosine

Function : calculate the cosine value of the floating-point accumulator

Variables : none

Addressing : accumulator

Also see : SIN, TAN, ACO, ASI, ATA

Example: :

 lda f200

 cos aaf

 sta f201

 ; leave the value of the cosine of f200 in f201

 User manual

autoSIM3 258 ©Copyright 2011 SMC

CCPPAA

Name : CPA - compares accumulator

Function : compares a value at the 16 bit or 32 bit or floating

 accumulator, effects the same operation as SBA

 but without changing the content of the accumulator

Variables : M or %MW, L or %MD, F or %MF

Addressing : absolute, indirect, immediate

Also see : SBA

Example :

 lda m200

 cpa 4

 rfz o0

 ; sets o0 to 1 if m200 is equal to 4, otherwise o0
 ; is reset to 0

 lda f200

 cpa f201

 rfz o1

 ; sets o1 to 1 if f200 is equal to f201, otherwise o1
 ; is reset to 0

 User manual

autoSIM3 259 ©Copyright 2011 SMC

DDEECC

Name : DEC – decrement

Function : decrements a word, a counter, a long, the 16 bit or 32 bit
accumulator

Variables : M or %MW, C or %C, L or %MD

Addressing : absolute, indirect, accumulator

Also see : INC

Example :

 dec m200

 ; decrements m200

 dec aal

 ; decrements the 32 bit accumulator

 dec m200

 dec m201 and m200=-1

 ; decrements a 32 bit value composed of
 ; m200 (lower weights)
 ; et m201 (higher weights)

 User manual

autoSIM3 260 ©Copyright 2011 SMC

DDVVAA

Name : DVA - divides accumulator

Function : division of the 16 bit accumulator by a word or

 a constant; division of the float accumulator by

 a float or a constant; division of the 32 bit

 by a long or a constant, for the 16 bit accumulator

the remainder is placed in word m0, if the division

is by 0

system bit 56 passes to 1

Variables : M or %MW, L or %MD, F or %MF

Addressing : absolute, indirect, immediate

Also see : MLA

Example :

 lda m200

 dva 10

 sta m201

 ; m201 is equal to m200 divided by 10, m0 contains the

 ; remainder

 lda l200

 dva $10000L

 sta l201

 User manual

autoSIM3 261 ©Copyright 2011 SMC

EEQQUU

Name : EQU - equal

Function : sets a variable to 1 if the test is true,

 if not the variable is set to

 0

Variables : I or %I, O or %Q, B or %M, T or %T, X or %X, U

Addressing : absolute, indirect (except for X variables)

Also see : NEQ, SET, RES, INV

Example :

 equ o0 and i10

 ; sets the output of o0 to the same state as input i10

 lda 10

 sta m200

 equ o(200) and i0

 ; sets o10 to the same state as input i0

 $t0=100

 equ t0 and i0

 equ o0 and t0

 ; sets o0 to the state of i0 with an activation delay

 ; of 10 seconds

 User manual

autoSIM3 262 ©Copyright 2011 SMC

FFTTII

Name : FTI - float to integer

Function : transfers the float accumulator to the 16 bit accumulator

Variables : none

Addressing : accumulator

Also see : ITF

Example :

 lda f200

 fti aaa

 sta m1000

 ; leaves the integer part of f200 in m1000

 User manual

autoSIM3 263 ©Copyright 2011 SMC

IINNCC

Name : INC - increment

Function : increments a word, a counter, a long the 16 or 32 bit

accumulator

Variables : M or %MW, C or %C, L or %MD

Addressing : absolute, indirect, accumulator

Also see : DEC

Example :

 inc m200

 ; adds 1 to m200

 inc m200

 inc m201 and m201=0

 ; increments a value on 32 bits, m200
 ; represents the
 ; lower weights, and m201 the higher weights

 inc l200

 ; increments long l200

 User manual

autoSIM3 264 ©Copyright 2011 SMC

IINNVV

Name : INV - inverse

Function : inverts the state of a boolean variable or inverts

all the bits of a word, a long or the 16 bit or 32 bit

accumulator

Variables : I or %I, O or %Q, B or %M, T or %T, X or %X, U,

M or %MW, L or %MD

Addressing : absolute, indirect, accumulator

Also see : EQU, NEQ, SET, RES

Example :

 inv o0

 ; inverts the state of output 0

 inv aaa

 ; inverts all the bits of the 16 bit accumulator

 inv m200 and i0

 ; inverts all m200 bits if i0 is at state 1

 User manual

autoSIM3 265 ©Copyright 2011 SMC

IITTFF

Name : ITF - integer to float

Function : transfers the 16 bit accumulator to the float accumulator

Variables : none

Addressing : accumulator

Also see : FTI

Example :

 lda 1000

 itf aaa

 sta f200

 ; leaves the constant 1000 in f200

 User manual

autoSIM3 266 ©Copyright 2011 SMC

IITTLL

Name : ITL - integer to long

Function : transfers the 16 bit accumulator to the 32 bit accumulator

Variables : none

Addressing : accumulator

Also see : LTI

Example :

 lda 1000

 itl aaa

 sta f200

 ; leaves the constant 1000 in l200

 User manual

autoSIM3 267 ©Copyright 2011 SMC

JJMMPP

Name : JMP - jump

Function : jump to a label

Variables : label

Addressing : label

Also see : JSR

Example :

 jmp:end of program:

 ; unconditional connection to end of
 ; program label:

 jmp:string: and i0

 set o0

 set o1

 :string:

 ; conditional connection to a label:string:
 ; following the state of i0

 User manual

autoSIM3 268 ©Copyright 2011 SMC

JJSSRR

Name : JSR - jump sub routine

Function : effects a connection to a sub routine

Variables : label

Addressing : label

Also see : RET

Example :

 lda m200

 jsr:square:

 sta m201

 jmp end:

 :square:

 sta m53

 mla m53

 sta m53

 ret m53

 :end:

 ; the sub routine « square » raises the content
 ; of the accumulator to the square

 User manual

autoSIM3 269 ©Copyright 2011 SMC

LLDDAA

Name : LDA - load accumulator

Function : loads a constant, word or counter in the 16 bit

 accumulator; loads a long or constant in the 32

 bit accumulator; loads a float or a constant in the

float accumulator; loads a counter or a time delay

in the 16 bit accumulator

Variables : M or %MW, C or %C, L or %MD, F or %MF, T or %T

Addressing : absolute, indirect, immediate

Also see : STA

Example :

 lda 200

 ; loads the constant 200 in the 16 bit accumulator

 lda 0.01R

 ; loads the real constant 0.01 in the float accumulator

 lda t10

 ; loads the counter of time delay 10 in the

; accumulator

 User manual

autoSIM3 270 ©Copyright 2011 SMC

LLTTII

Name : LTI - long to integer

Function : transfers the 32 bit accumulator to the 16 bit

accumulator

Variables : none

Addressing : accumulator

Also see : ITL

Example :

 lda l200

 lti aaa

 sta m1000

 ; leaves the 16 bits of lower weight of l200 in m1000

 User manual

autoSIM3 271 ©Copyright 2011 SMC

MMLLAA

Name : MLA - multiples accumulator

Function : multiplies the 16 bit accumulator by a word or a constant;

 multiplies the 32 bit accumulator by a long or a constant;

 multiplies the float accumulator by a float or a constant;

 for the 16 bit accumulator the 16 bits of higher weight

result of the multiplication will be transferred in

 m0

Variables : M or %MW, L or %MD, F or %MF

Addressing : absolute, indirect, immediate

Also see : DVA

Example :

 lda m200

 mla 10

 sta m201

 ; multiplies m200 by 10, m201 is loaded with the
 ; 16 bits of lower weight, and m0 with the 16 bits of
 ; higher weight

 User manual

autoSIM3 272 ©Copyright 2011 SMC

MMTTAA

Name : MTA - memory to accumulator

Function : transfers the contents of a memory address to the

 16 bit accumulator, the specified word or constant

defines the offset of the memory address to reach; the word

m0 must be loaded with the segment value of the memory

address to be reached; only useable with a PC compiler

Variables : M or %MW

Addressing : indirect, immediate

Also see : ATM

Example :

 lda $b800

 sta m0

 mta $10

 ; places the value contained at address $b800:$0010
 ; in the 16 bit accumulator

 User manual

autoSIM3 273 ©Copyright 2011 SMC

NNEEQQ

Name : NEQ - not equal

Function : sets a variable to 0 if the test is true,

 if not the variable is set to 1

Variables : I or %I, O or %Q, B or %M, T or %T, X or %X, U

Addressing : absolute, indirect (except for X variables)

Also see : EQU, SET, RES, INV

Example :

 neq o0 and i00

 ; sets the output of o0 to a complement state of input
 ; i10

 lda 10

 sta m200

 neq o(200) and i0

 ; sets o10 to a complement state of input i0

 $t0=100

 neq t0 and i0

 neq o0 and t0

 ; sets o0 to the state of i0 with a deactivation
 ; delay of 10 seconds

 User manual

autoSIM3 274 ©Copyright 2011 SMC

OORRAA

Name : ORA - or accumulator

Function : effects an OR logic on the 16 bit accumulator

 and a word or a constant, or on the 32 bit accumulator

and a long or a constant

Variables : M or %M, L or %MD

Addressing : absolute, indirect, immediate

Also see : ANA, XRA

Example :

 ora %1111111100000000

 ; sets the 8 bits of lower weight of

 ; the 16 bit accumulator to 1

 ora $ffff0000L

 ; sets the 16 bits of higher weight of the 32 bit accumulator

 ; to 1

 User manual

autoSIM3 275 ©Copyright 2011 SMC

RREESS

Name : RES - reset

Function : sets a boolean variable, a word

 a counter, a long, the 16 bit accumulator

 or the 32 bit accumulator to 0

Variables : I or %I, O or %Q, B or %M, T or %T, X or %X, U,

M or %MW, C or %C, L or %MD

Addressing : absolute, indirect (except for X variables), accumulator

Also see : NEQ, SET, EQU, INV

Example :

 res o0

 ; sets the output of o0 to 0

 lda 10

 sta m200

 res o(200) and i0

 ; sets o10 to 0 if input i0 is at 1

 res c0

 ; sets counter 0 to 0

 User manual

autoSIM3 276 ©Copyright 2011 SMC

RREETT

Name : RET - return

Function : indicates the return of a sub routine and

 places a word or a constant in the 16 bit

 accumulator; or places a long or a constant in

 the 32 bit accumulator; or places a float or a

 constant in the float accumulator

Variables : M or %MW, L or %MD, F or %MF

Addressing : absolute, indirect, immediate

Also see : JSR

Example :

 ret 0

 ; returns to a sub routine by placing 0 in

 ; the 16 bit accumulator

 ret f200

 ; returns to a sub routine by placing the content of

 ; f200 in the float accumulator

 User manual

autoSIM3 277 ©Copyright 2011 SMC

RRFFCC

Name : RFC - read flag: carry

Function : transfers the carry indicator in a
 boolean variable

Variables : I or %I, O or %Q, B or %M, T or %T, X or %X, U

Addressing : absolute

Also see : RFZ, RFS, RFO

Example :

 rfc o0

 ; transfers the carry indicator to o0

 lda m200

 ada m300

 sta m400

 rfc b99

 lda m201

 ada m301

 sta m401

 inc m401 and b99

 ; effects an addition on 32 bits

 ; (m400,401)=(m200,201)+(m300,301)

 ; m200, m300 and m400 are lower weights

 ; m201, m301 and m401 are higher weights

 User manual

autoSIM3 278 ©Copyright 2011 SMC

RRFFOO

Name : RFO - read flag: overflow

Function : transfers the contents of the overflow indicator in
 a boolean variable

Variables : I or %I, O or %Q, B or %M, T or %T, X or %X, U

Addressing : absolute

Also see : RFZ, RFS, RFC

Example :

 rfo o0

 ; transfers the overflow indicator to o0

 User manual

autoSIM3 279 ©Copyright 2011 SMC

RRFFSS

Name : RFS - read flag: sign

Function : transfers the sign indicator in a

 boolean variable

Variables : I or %I, O or %Q, B or %M, T or %T, X or %X, U

Addressing : absolute

Also see : RFZ, RFC, RFO

Example :

 rfs o0

 ; transfers the sign indicator to o0

 User manual

autoSIM3 280 ©Copyright 2011 SMC

RRFFZZ

Name : RFZ - read flag: zero

Function : transfers the content of a zero result indicator
 in a boolean variable

Variables : I or %I, O or %Q, B or %M, T or %T, X or %X, U

Addressing : absolute

Also see : RFC, RFS, RFO

Example :

 rfz o0

 ; transfers the zero result indicator to o0

 lda m200

 cpa m201

 rfz o0

 ; position o0 at 1 if m200 is equal to m201

 ; or 0 if not

 User manual

autoSIM3 281 ©Copyright 2011 SMC

RRIINN

Name : RIN - read input

Function : effects a reading of physical input. This function is only

implemented on Z targets and varies following the target.

See the documentation related to each executor

for more information..

Variables : none

Addressing : immediate

Also see : WOU

 User manual

autoSIM3 282 ©Copyright 2011 SMC

RRLLAA

Name : RLA - rotate left accumulator
Function : effects a left rotation of the bits of the

16 bit or 32 bit accumulator; the bits evacuated to the left

enter on the right, the subject of this function is a constant

which sets the number of shifts to be made, the size of the

subject (16 or 32 bits) determines which of the

accumulators will undergo rotation

Variables : none

Addressing : immediate

Also see : RRA

Example :

 ana $f000

 ; separates the digit of higher weight of the 16 bit
accumulator

 rla 4

 ; and brings it to the right

 rla 8L

 ; effects 8 rotations to the left of the bits of the 32 bit

; accumulator

 User manual

autoSIM3 283 ©Copyright 2011 SMC

RRRRAA

Name : RRA - rotate right accumulator
Function : effects a right rotation of the bits of the

16 bit or 32 bit accumulator; the bits evacuated to the right
enter on the left, the subject of this function is a constant which sets
the number of shifts to be made, the size of the subject (16 or 32
bits) determines which of the accumulators will undergo rotation

Variables : none

Addressing : immediate

Also see : RLA

Example :

 ana $f000

 ; separates the digit of higher weight of the 16 bit

 rra 12

 ; and brings it to the right

 rra 1L

 ; effects a rotation of the bits of the 32 bit accumulator

; to a position towards the right

 User manual

autoSIM3 284 ©Copyright 2011 SMC

SSBBAA

Name : SBA - subtracts accumulator

Function : removes the content of a word or constant from

 the 16 bit accumulator; removes the content of a long or a

constant from the 32 bit accumulator; removes the content

of a float or constant from the float accumulator

Variables : M or %MW, L or %MD, F or %MF

Addressing : absolute, indirect, immediate

Also see : ADA

Example :

 sba 200

 ; removes 200 from the 16 bit accumulator

 sba f(421)

 ; removes the float content if the number is contained

 ; in word 421 from the float accumulator

 User manual

autoSIM3 285 ©Copyright 2011 SMC

SSEETT

Name : SET - set

Function : sets a boolean variable to 1; sets all the bits of a word,

a counter, a long, the 16 bit or the 32 bit

accumulator to 1

Variables : I or %I, O or %Q, B or %M, T or %T, X or %X, U,

M or %MW, C or %C, L or %MD

Addressing : absolute, indirect (except for X variables), accumulator

Also see : NEQ, RES, EQU, INV

Example :

 set o0

 ; sets the output of o0 to 1

 lda 10

 sta m200

 set o(200) and i0

; sets o10 to 1 if input i0 is at 1

 set m200

 ; sets m200 to the value -1

 set aal

 ; sets all the bits of the 32 bit accumulator to 1

 User manual

autoSIM3 286 ©Copyright 2011 SMC

SSIINN

Name : SIN – accumulator sine

Function : calculate the sine value of the floating-point accumulator

Variables : none

Addressing : accumulator

Also see : COS, TAN, ACO, ASI, ATA

Example: :

 lda f200

 sin aaf

 sta f201

 ; leave the value of the sine of f200 in f201

 User manual

autoSIM3 287 ©Copyright 2011 SMC

SSQQRR

Name : SQR - square root

Function : calculates the square root of the float accumulator

Variables : none

Addressing : accumulator

Also see : ABS

Example :

 lda 9

 itf aaa

 sqr aaf

 fti aaa

 sta m200

 ; leaves value 3 in m200

 User manual

autoSIM3 288 ©Copyright 2011 SMC

SSTTAA

Name : STA - store accumulator

Function : stores the 16 bit accumulator in a counter or a word;

stores the 32 bit accumulator in a long; stores the

float accumulator in a float, stores the 16 bit accumulator

in a time delay order

Variables : M or %MW, C or %C, L or %MD, F or %MF, T or %T

Addressing : absolute, indirect

Also see : LDA

Example :

 sta m200

 ; transfers the content of the 16 bit accumulator

 ; to word 200

 sta f200

 ; transfers the content of the float accumulator

 ; to float 200

 sta l200

 ; transfers the 32 bit accumulator to long l200

 User manual

autoSIM3 289 ©Copyright 2011 SMC

TTAANN

Name : TAN – accumulator tangent

Function : calculate the tangent value of the floating-point accumulator

Variables : none

Addressing : accumulator

Also see : COS, SIN, ACO, ASI, ATA

Example: :

 lda f200

 tan aaf

 sta f201

 ; leave the value of the tangent of f200 in f201

 User manual

autoSIM3 290 ©Copyright 2011 SMC

TTSSAA

Name : TSA - test accumulator

Function : effects AND logic on the 16 bit accumulator and a word

 or a constant, effects AND logic on the 32 bit accumulator

and a long or a constant, operates in a similar manner to ANA
instruction but without changing the accumulator content

Variables : M or %MW, L or %MD

Addressing : absolute, indirect, immediate

Also see : ANA

Example :

 tsa %10

 rfz b99

 jmp:follow: and b99

 ; connection to label:follow: if bit 1

 ; of the 16 bit accumulator is at 0

 User manual

autoSIM3 291 ©Copyright 2011 SMC

WWOOUU

Name : WOU - write output

Function : effects a writing of the physical outputs. This function is

only implemented on Z targets (and varies following the

target) See the documentation related to each executor for

more information

Variables : none

Addressing : immediate

Also see : RIN

 User manual

autoSIM3 292 ©Copyright 2011 SMC

XXRRAA

Name : XRA - xor accumulator

Function : effects an EXCLUSIVE OR on the 16 bit accumulator and

a word or a constant, effects an EXCLUSIVE OR on the 32

bit accumulator and a long or a constant

Variables : M or %MW, L or %MD

Addressing : absolute, indirect, immediate

Also see : ORA, ANA,

Example :

 xra %1111111100000000

 ; inverts the 8 bits of higher weight of the 16 bit accumulator

 xra 1L

 ; inverts the lower weight bit of the 32 bit accumulator

 User manual

autoSIM3 293 ©Copyright 2011 SMC

Macro-instruction
Macro-instructions are new literal language instructions which hold a
set of basic instructions.
Call up syntax for a macro-instruction:
« %<Macro-instruction name*> {parameters ...} »
Statement syntax for a macro-instruction:

#MACRO

<program>

#ENDM

This statement is found in a file with the name of the macro-instruction
and the extension « .M ».

The file M can be placed in a sub-directory « lib » of the AUTOSIM
installation directory or in project resources.

Ten parameters can be passed to the macro-instruction. When called
up these parameters are placed on the same line as the macro-
instruction and are separated by a space
The syntax « {?n} » in the macro-instruction program refers to the n
parameter.

Example:
We are going to create a « square » macro-instruction which raises the
first parameter of the macro-instruction to its square and puts the
results in the second parameter.
Call up of the macro-instruction:
lda 3
sta m200
%square m200 m201
; m201 will contain 9 here

« SQUARE.M » file:

#MACRO
lda {?0}
mla {?0}
sta {?1}
#ENDM

* The name of the macro-instruction can be a complete access path to the file « .M », it can contain

a read and directory designation.

 User manual

autoSIM3 294 ©Copyright 2011 SMC

Libraries
A library is used to define the resources which will be compiled one
time in an application, no matter how many times those resources are
called up.

Syntax for defining a library:
#LIBRARY <Library name>

<program>

#ENDL

<library name > is the function name which will be called up for a
jsr:<library name> instruction:
The first time the library code is called up by the compiler its code is
compiled. The following times, the call up is simply directed to the
existing routine..
This mechanism is especially suited to the use of function blocks and
macro-instructions to limit the generation of codes in the event that
there is multiple use of the same program resources.
Words m120 to m129 are reserved for libraries and can be used for
passing parameters.

Pre-defined macro-instructions
Inversion macro-instructions are in the sub-directory « LIB » of the
AUTOSIM installation directory.
Functional block equivalents are also present.

Description of pre-defined macro-instructions

Conversions
%ASCTOBIN <first two digits> <last two digits> <binary result>

Effecting a hexadecimal ASCII conversion (first two parameters) to
binary (third parameter), by exiting the accumulator containing $FFFF
if the first two parameters are not valid ASCII numbers, otherwise 0. All
the parameters are 16 bit words.

%BCDTOBIN <value in BCD> <binary value>

Effecting a BCD conversion to binary. In the output of the
accumulator containing $FFFF if the first parameter is not a valid bcd
number, otherwise 0. The two parameters are 16 bit words.

%BINTOASC <binary value> <upper part result> <lower part result>

Effecting a binary conversion (first parameter) to hexadecimal ASCII
(second and third parameters). All parameters are 16 bit words.

%BINTOBCD <binary value> <BCI value>

 User manual

autoSIM3 295 ©Copyright 2011 SMC

Effecting a BCD (first parameter) conversion to binary (second
parameter). In the accumulator containing $FFFF if the binary number
can be converted in BCD, otherwise 0.

%GRAYTOB <GRAY code value> <binary value>

Effecting a Gray code conversion (first parameter) to binary (second
parameter).

Treatment on word tables
%COPY <first word table source> <first word table destination> <number of words>

Copy a table of source words to a table of destination words. The
length is given by the number of words.

%COMP <first word table 1> <first word table 2> <number of words> <result>

Compares two tables of words. The result is a binary variable which
takes the value 1 if all the elements in table 1 are identical to those in
table 2.

%FILL <first word table> <value> <number of words>

Fills a word table with a value.

Treatment on strings

The coding of strings is as follows: one character per word, one word
containing the value 0 indicates the end of the chain. In macro-
instructions the strings are passed in parameters by designating by the
first word they are composed of.

%STRCPY <source string> <destination string>

Copies a string to another.

%STRCAT <source string> <destination string>

Adds the source string to the end of the destination string.

%STRCMP <string 1> <string 2> <result>

Compares to strings. The result is a boolean variable which passes to
1 if the two strings are identical.

%STRLEN <string> <result>

Places the length of the string in the result word.

%STRUPR <string>

Transforms all the characters of the string into capital letters.

%STRLWR <string>

 User manual

autoSIM3 296 ©Copyright 2011 SMC

Transforms all the characters of the string into lower case letters.

Example:
Conversion of m200 (binary) to m202, m203 in 4 digits (ASCII bcd)
%bintobcd m200 m201
%bintoasc m201 m202 m203

Example of low level literal language
Conditions: let's start with the simplest example: round trip of a
locomotive on track 1.
Solution:

0 set _av1_

set _dv1_ and _t1d_

res _dv1_ and _t1i_

� Example\lit\low level literal1.agn

A more evolved example.
Conditions:
The locomotive must make a 10 second delay at the right end of the
track and a 4 second delay at the left end.

Solution:

 User manual

autoSIM3 297 ©Copyright 2011 SMC

0 $t0=100,40

equ u100 and _t1i_ and _t1d_

equ u101 orr t0 eor t1

equ _av1_ orr u100 eor u101

set _dv1_ and _t1d_

equ t0 and _t1d_

res _dv1_ and _t1i_

equ t1 and _t1i_

� Example\lit\low level literal 2.agn

 User manual

autoSIM3 298 ©Copyright 2011 SMC

Another example:
Conditions: Make all of the model lights flash:

Solution:

0 ; table contenant l'adresse de tous les feux

$_table_=123,?_s1d_,?_s1i_,?_s2a_,?_s2b_

$...=?_s3d_,?_s3i_,?_s4a_,?_s4b_

$...=?_s5i_,?_s5d_,?_s6d_,?_s6i_

$...=?_s7i_,?_s7d_,?_s8d_,?_s8i_

$...=-1

; initialise l'index sur le debut de la table

lda ?_table_

sta _index_

:boucle:

; la valeur -1 marque la fin de la table

jmp :fin: and m(_index_)=-1

; inverser la sortie

lda m(_index_)

sta _index2_

inv o(_index2_)

inc _index_

jmp :boucle:

:fin:

� Example\lit\low level literal 3.agn

This example shows the use of presettings. They are used here to
create a variable address table. The table contains the addresses of all
the outputs which pilot the model lights.
For each execution cycle, the state of all the lights is inverted.

A problem occurs, all the lights flash very quickly and it is hard to see
much.
Let's modify our example.
Conditions:
The state of all the lights must remain inverted every ten seconds one
by one.

 User manual

autoSIM3 299 ©Copyright 2011 SMC

Solution:

10 ; table contenant l'adresse de tous les feux

$_table_=123,?_s1d_,?_s1i_,?_s2a_,?_s2b_

$...=?_s3d_,?_s3i_,?_s4a_,?_s4b_

$...=?_s5i_,?_s5d_,?_s6d_,?_s6i_

$...=?_s7i_,?_s7d_,?_s8d_,?_s8i_

$...=-1

$_index_=?_table_

:boucle:

; la valeur -1 marque la fin de la table

jmp :fin de table: and m(_index_)=-1

; inverser la sortie

lda m(_index_)

sta _index2_

inv o(_index2_)

inc _index_

jmp :fin:

:fin de table:

lda ?_table_

sta _index_

:fin:

=1

20

t0/x20/1

� Example\lit\low level literal 4.agn

Extended literal language
Extended literal language is a subset of low level literal language. It is
used for writing boolean and numeric equations more simply and
concisely.
It is still possible to write structures like IF ... THEN ... ELSE and
WHILE ... ENDWHILE (loop).
Use of extended literal language is subject to the same rules as low
level literal language, it uses the same syntax for variables,
mnemonics, the test types (fronts, complement state, immediate state)
and addressing modes.

 User manual

autoSIM3 300 ©Copyright 2011 SMC

It is possible to mix low level literal language with extended literal
language.
When the compiler of literal language detects a line written in extended
literal language, it decomposes it into low level literal language
instructions, then compiles it.

Writing boolean equations
General syntax:
« bool. variable=(assignment type) (bool. variable 2 operator 1 bool. variable

3... operator n -1 bool. variable n) »

The type of assignment must be indicated if it is other than
« Assignment »
It can be:
� « (/) »: complement assignment,

� « (0) »: reset,

� « (1) »:set to one.

The operators can be:
� « . »: and,

� « + »: or.

The equations can contain various levels of parentheses to indicate
the evaluation order. By default, the equations are evaluated from the
left towards the right.

Examples and equivalencies with low level literal language

o0=(i0) equ o0 and i0

o0=(i0.i1) equ o0 and i0 and i1

o0=(i0+i1) equ o0 orr i0 eor i1

o0=(1) set o0

o0=(0) res o0

o0=(1)(i0) set o0 and i0

o0=(0)(i0) res o0 and i0

o0=(1)(i0.i1) set o0 and i0 and i1

o0=(0)(i0+i1) res o0 orr o0 eor i1

o0=(/)(i0) neq o0 and i0

o0=(/)(i0.i1) neq o0 and i0 and i1

o0=(/i0) equ o0 and /i0

o0=(/i0./i1) equ o0 and /i0 and /i1

o0=(c0=10) equ o0 and c0=10

o0=(m200<100+m200>200) equ o0 orr m200<100 eor

m200>200

 User manual

autoSIM3 301 ©Copyright 2011 SMC

Writing numeric equations
General equations for integers:
« num. variable 1=[num. variable 2 operator 1 ... operator n-1 num. variable n] »

The equations can contain various levels of braces for indicating the
evaluation order. By default, the equations are evaluated from left to
right. Operators for 16 and 32 bit integers can be:
« + »: addition (equivalent to instruction ADA),

« - »: subtraction (equivalent to instruction SBA),

« * »: multiplication (equivalent to instruction MLA),

« / »: division (equivalent to instruction DVA),

« < »: shift to left (equivalent to instruction RLA),

« > »: shift to right (equivalent to instruction RRA),

« & »: « And » binary (equivalent to instruction ANA),

« | »
*
: « Or » binary (equivalent to instruction ORA),

« ^ »: « Exclusive or » binary (equivalent to instruction XRA).

Operators for floats can be:
� « + »: addition (equivalent to instruction ADA),

� « - »: subtraction (equivalent to instruction SBA),

� « * »: multiplication (equivalent to instruction MLA),

� « / »: division (equivalent to instruction DVA).

It is possible to indicate the constant in float equations. If this is
necessary use the presettings on floats.
Equations on floats can call up the « SQR » and « ABS » functions
Note: depending on the complexity the compiler may use intermediate
variables. These variables are the words m53 to m59 for 16 bit
integers, the longs l53 to l59 for 32 bit integers and the floats f53 à f59.

Examples and equivalencies with low level literal language
M200=[10] lda 10

sta m200

M200=[m201] lda m201

sta m200

M200=[m201+100] lda m201

ada 100

sta m200

M200=[m200+m201-m202] lda m200

ada m201

* This character is normally associated to the [ALT] + [6] keys on keyboards

 User manual

autoSIM3 302 ©Copyright 2011 SMC

sba m202

sta m200

M200=[m200&$ff00] lda m200

ana $ff00

sta m200

F200=[f201] lda f201

sta f200

F200=[f201+f202] lda f201

ada f202

sta f200

F200=[sqr[f201]] lda f201

sqr aaa

sta f200

F200=[sqr[abs[f201*100R]]] lda f201

mla 100R

abs aaa

sqr aaa

sta f200

L200=[l201+$12345678L] lda l201

ada $12345678L

sta l200

IF...THEN...ELSE...structure
General syntax:
IF(test)

 THEN

 action if true test

 ENDIF

 ELSE

 action if false test

 ENDIF

The test must comply with the syntax described in the chapter
dedicated to boolean equations.
Only if an action tests true or tests false can it appear.
It is possible to connect multiple structures of this type.
System bits u90 to u99 are used as temporary variables for managing
this type of structure.

Examples:
IF(i0)

 THEN

 inc m200 ; increments word 200 if i0

 ENDIF

 User manual

autoSIM3 303 ©Copyright 2011 SMC

IF(i1+i2)

 THEN

 m200=[m200+10] ; adds 10 to word 200 if the or i2

 ENDIF

 ELSE

 res m200 ; else effect m200

 ENDIF

WHILE ... ENDWHILE structure
General syntax:
WHILE(test)

 action is repeated as long as the test is true

ENDWHILE

The test must comply with the syntax described in the chapter
dedicated to boolean equations.
It is possible to connect multiple structures of this type.
System bits u90 to u99 are used as temporary variables for managing
this type of structure.

Examples:
m200=[0]

WHILE(m200<10)

 set o(200)

 inc m200 ; increments word 200

ENDWHILE

This example sets outputs o0 to o9 to one.

Example of a program in extended literal language
Let's go back to the example from the previous chapter

Solution:

0 _av1_=(1)

dv1=(1)(_t1d_)

dv1=(0)(_t1i_)

� Example\lit\extended literal 1.agn

Let's complicate our example with some calculations
Conditions:
Calculate the speed in millimeters per second and meters per hour of
the locomotive on the left to right trajectory.

 User manual

autoSIM3 304 ©Copyright 2011 SMC

Solution:

0 _av1_=(1)

dv1=(1)(_t1d_)

dv1=(0)(_t1i_)

� dv1 _temps aller_=[m32]

� dv1 $_longueur_=300 ; en mm

$_mille_=1000;

$_dixdansh_=36000;

$_dix_=10;

temps mis=[m32-_temps aller_]

IF(_temps mis_<0)

THEN

temps mis=[_temps mis_+100]

ENDIF

lda _temps mis_

itf aaa

sta _dixieme_

vitesse mm par s=[_longueur_/[_dixieme_/_dix_]]

vitesse m par h=[[_longueur_/_mille_]/[_dixieme_/_dixdansh_]]

� Example\lit\extended literal 2.agn

Word 32 is used to read the system time. The value is then transferred
to the float to effect the calculations without compromising exactness.

ST literal language
ST literal language is a structured literal language defined by IEC1131-
3 standard. This language is used to write boolean and numeric
equations as well as program structures.

General Information
ST literal language is used in the same way as low level literal
language and extended literal language.

 User manual

autoSIM3 305 ©Copyright 2011 SMC

Commands are used to establish the sections in ST literal language
« #BEGIN_ST » indicates the beginning of an ST language section.
« #END_ST » indicates the end of an ST language section.
Example:
m200=[50] ; extended literal language

#BEGIN_ST

m201:=4; (* ST language *)

#END_ST

It is also possible to choose to use ST language for an entire sheet.
This selection is made in the properties dialogue box on each sheet.

On a sheet where ST language is the default language it is possible to
enter low level and extended literal language by using the commands
« #END_ST » and « #BEGIN_ST ».

Comments for ST language must start with « (* » and end with « *) ».

ST language instructions end with the character « ; ». Multiple
instructions can be written on the same line.

Example:
o0:=1; m200:=m200+1;

Boolean equations

The general syntax is:
variable:= boolean equation;

Boolean equations can be composed of a constant, a variable or
multiple variables separated by operators.

Constants can be: 0, 1, FALSE or TRUE.

Examples:
o0:=1;

o1:=FALSE;

The operators used to separate multiple variables are: + (or), . (and),
OR or AND.

« And » has priority over« Or ».

 User manual

autoSIM3 306 ©Copyright 2011 SMC

Example:
o0:=i0+i1.i2+i3;

Will be treated as:
o0:=i0+(i1.i2)+i3;

Parentheses can be used in the equations to indicate priorities.

Example:
o0:=(i0+i1).(i2+i3);

Numeric tests can be used.

Example:
o0:=m200>5.m200<100;

Numeric equations

The general syntax is:
variable:= numeric equation;

Numeric equations can be composed of a constant, a variable or
multiple variables separated by operators.

The constants can be expressed as decimal, hexadecimal (prefix #16)
or binary (prefix #2) values.

Examples:
m200:=1234;

m201:=16#aa55;

m202:=2#100000011101;

Operators are used to separate multiple variables or constants in their
order of priority.
* (multiplication),/ (division), + (addition), - (subtraction), & or AND
(binary and), XOR (binary exclusive or), OR (binary or).

Examples:
m200:=1000*m201;

m200:=m202-m204*m203; (* equivalent to m200:=m202-(m204*m203) *)

Parentheses can be used in the equations to indicate priority.

 User manual

autoSIM3 307 ©Copyright 2011 SMC

Example:
m200:=(m202-m204)*m203;

Programming structures

IF THEN ELSE test

Syntax:
IF condition THEN action ENDIF;

and

IF condition THEN action ELSE action ENDIF;

Example:
if i0

 then o0:=TRUE;

 else

 o0:=FALSE;

 if i1 then m200:=4; endif;

endif ;

WHILE loop

Syntax:
WHILE condition DO action ENDWHILE;

Example:
while m200<1000

 do

 m200:=m200+1;

endwhile;

REPEAT UNTIL loop

Syntax:
REPEAT action UNTIL condition; ENDREPEAT;

Example:
repeat

 m200:=m200+1;

until m200=500

endrepeat;

 User manual

autoSIM3 308 ©Copyright 2011 SMC

FOR TO loop

Syntax:
FOR variable:=start value TO end value DO action ENDFOR;

or

FOR variable:=start value TO end value BY no DO action ENDFOR;

Example:
for m200:=0 to 100 by 2

 do

 m201:=m202*m201;

 endfor;

Exiting a loop

The key word « EXIT » is used to exit a loop.

Example:
while i0

 m200:=m200+1;

 if m200>1000 then exit; endif;

endwhile;

Example of a program in extended literal language
Let's go back to our example in the previous chapter

Solution:

0 _av1_:=TRUE;

if _t1d_ then _dv1_:=TRUE; endif;

if _t1i_ then _dv1_:=FALSE; endif;

� Example\lit\ST literal 1.agn

Organization chart
AUTOSIM implements a « organization chart » type program.
Literal languages must be used with this type of program. See the
previous chapters to learn how to use these languages.

 User manual

autoSIM3 309 ©Copyright 2011 SMC

The basis of programming with an organizational chart form is the
graphic representation of an algorithmic treatment.
Unlike Grafcet language, programming in the organizational chart form
generates a code which will be executed one time per search cycle.
This means that it is not possible to remain in an organizational chart
rectangle it is mandatory for the execution to exit the organizational
chart to continue to execute the rest of the program..
This is a very important point and must not be forgotten when this
language is selected.
Only rectangles can be drawn. The contents of a rectangle and its
connections determine if the rectangle is an action or a test.

Creating an organizational chart
The rectangles are drawn by selecting the command « Add … / Code
box» from the menu (click on the right side of the mouse on the bottom
of the sheet to open the menu).

It is necessary to place a block (key [<]) at the entry of each
rectangle, this must be placed on the upper part of the rectangle.
If the rectangle is an action it will have only one exit represented by a

 block (key [E]) on the lower left side of the rectangle.

An action rectangle:

If the rectangle is a test it must have two outputs. The first is

represented by a block. (key [E]) on the lower left side and is for

a true test, the second represented by a block (key [=]) is
immediately to the right of the other output and is for a false test.

 User manual

autoSIM3 310 ©Copyright 2011 SMC

A test rectangle:

The branches of the organizational chart must always end with a
rectangle without an output that could remain empty.

Rectangle content

Action rectangle content

Action rectangles can contain any kind of literal language instructions.

Test rectangle content

Test rectangles must contain a test that complies with the test syntax
of the IF...THEN...ELSE... type structure of extended literal language.
For example:
IF (i0)

It is possible to write actions before this test in the test rectangle.
This can be used to make certain calculations before the test
For example, if we want to test if the word 200 is equal to the word 201
plus 4:
m202=[m201+4]

IF(m200=m202)

Illustration
Our first, now typical, example is to make a locomotive make round
trips on track 1 of the model.

 User manual

autoSIM3 311 ©Copyright 2011 SMC

Solution:

set _av1_

if(_t1d_)

set _dv1_ if(_t1i_)

res _dv1_

� Example\ Ornagization chart\ Ornagization chart 1.agn

Second example
Conditions:
Make all the model light flash. The light change states every second.

 User manual

autoSIM3 312 ©Copyright 2011 SMC

Solution:

$t0=10

t0=(t0)

index%m=[?_s1d_]

inv o(_index%m_) and t0

inc _index%m_

calcul%m=[?_s8i_+1]

IF(_index%m_=_calcul%m_)

� Example\ Ornagization chart\ Ornagization chart 2.agn

Note the use of automatic symbols in this example.

 User manual

autoSIM3 313 ©Copyright 2011 SMC

Function blocks
AUTOSIM implements the use of function blocks.
This modular programming method is used to associate a set of
instructions written in literal language to a graphic element .
Function blocks are defined by the programmer. Their number is not
limited. It is possible to create sets of function blocks to allow a
modular and standardize concept of applications.
Function blocks are used within flow chart or ladder type models, they
have n boolean inputs and n boolean outputs. If the block is going to
treat variables which are not boolean, then they will be mentioned in
the drawing of the function block. The inside of the block can receive
parameters: constant or variable.

Creating a function block
A function block is composed of two separate files. One file has
« .ZON » extension which contains the drawing of the function block
and a file with « .LIB » extension which contains a series of
instructions written in literal language which establish the functionality
of the function block.
The « .ZON » and « .LIB » files must bear the name of the function
block. For example, if we decide to create a function block
« MEMORY », we need to create the files « MEMORY.ZON » (to draw
the block) and « MEMORY.LIB » (for the functionality of the block).

Drawing a block and creating a « .ZON » file
The envelop of a function block is composed of a code box to which
blocks dedicated for the function block are added.
To draw a function block follow the steps below:
� use the assistant (recommended)

Block boolean
outputs

(maximum 16)

Block boolean
inputs

(maximum 16)
Block

parameters

(maximum 16)

 User manual

autoSIM3 314 ©Copyright 2011 SMC

Or:
� draw a code box (use the command « Add …/Code box » from the menu):

� place a block (key [8]) on the upper right corner of the code box:

� place a block (key [9]) on the upper right corner of the code box:

� delete the line at the top of the block (key [A] is used to place blank blocks):

� click with the left side of the mouse on the upper left corner of the functional

block, then enter the name of the functional block which must not be more than

8 characters (the « .ZON » and « .LIB » files must bear this name), then press

[ENTER].

 User manual

autoSIM3 315 ©Copyright 2011 SMC

� if additional boolean inputs are necessary, a block must be used (key [;])

or (key [:]), the added inputs must be located right below the first input, no

free space should be left,

� if additional boolean outputs are needed a block must be added (key [>])

or (key [?]), the added outputs must be located right below the first

output, no free space should be left,

� the interior of the block can contain comments or parameters, the parameters

are written between braces « {...} ». Everything not written between braces is

ignored by the compiler. It is interesting to indicate the use of boolean inputs

and outputs inside the block.

� when the block is finished, the command « Select » must be used from the

« Edit » menu to select the drawing of the functional block, then save it in the

« .ZON » file with the « Copy to» command from the « Edit » menu.

Creating an « .LIB » file
The « .LIB » file is a text file containing instructions in literal language
(low level or extended). These instructions establish the functionality of
the function block.
A special syntax is used to refer to block boolean inputs, block boolean
outputs and block parameters.
To refer to a block boolean input, use the syntax« {Ix} » where x is the
number of the boolean input expressed in hexadecimal (0 to f).
To refer to a block boolean output, use the syntax« {Ox} » where x is
the number of the boolean output expressed in hexadecimal (0 to f).
To refer to a block parameter use the syntax « {?x} » where x is the
number of the parameter in hexadecimal (0 to f).
The .LIB can be placed in the « lib » sub-directory of the AUTOSIM
installation directory or in the project resources.

 User manual

autoSIM3 316 ©Copyright 2011 SMC

Simple example of a function block
We are going to create a « MEMORY » function block which contains
two boolean inputs (set to one and reset) and a boolean output
(memory state).
The block drawing contained in the « MEMORY.ZON » file is:

Block functionality contained in the « MEMORY.LIB » file is:
{O0}=(1)({I0})

{O0}=(0)({I1})

The block can then be used in the following way:

or

To use a function block in an application, select the command «Paste
from » from the « Edit » menu and select the « .ZON » file
corresponding to the function block used.

Illustration
Let's go back to our typical example.
Conditions:
Round trip of a locomotive on track 1 of the model.

Solution:

ALLERRET

t1d capteur droit alimentation AV1

t1i capteur gauche direction DV1

BF aller/retour

� Example\fb\fb 1.agn

; bloc fonctionnel ALLERRET
; aller retour d’une locomotive sur une voie

 User manual

autoSIM3 317 ©Copyright 2011 SMC

; les entrées booléennes sont les fins de course
; les sorties booléennes sont l’alimentation de la voie (0) et la direction
(1)

; toujours alimenter la voie
set {O0}

; piloter la direction en fonction des fins de course

{O1}=(1)({I0})
{O1}=(0)({I1})

To illustrate the use of function blocks, let's complete our example.
Conditions:
Round trip of two locomotives on tracks 1 and 3.
Solution:

ALLERRET

t1d capteur droit alimentation AV1

t1i capteur gauche direction DV1

BF aller/retour

ALLERRET

t3d capteur droit alimentation AV3

t3i capteur gauche direction N DV3

BF aller/retour

� Example\ fb\fb 2.agn

This example shows that with the same function block it is easy to
make different modules of an operative party function in the identical
manner.
Let's complete our example to illustrate the use of parameters
Conditions:
The two locomotives must make a delay at the end of the track. For
locomotive 1: 10 seconds on the right and 4 seconds on the left, for
locomotive 2: 20 seconds on the right and 8 seconds on the left.

 User manual

autoSIM3 318 ©Copyright 2011 SMC

Solution:
ARATT

t1d capteur droit alimentation AV1

t1i capteur gauche direction DV1

temporisation 1 {t0}

attente a droite : {100}

temporisation 2 {t1}

attente a gauche : {40}

BF aller/retour avec attente

ARATT

t3d capteur droit alimentation AV3

t3i capteur gauche direction N DV3

temporisation 1 {t2}

attente a droite : {200}

temporisation 2 {t3}

attente a gauche : {80}

BF aller/retour avec attente

 User manual

autoSIM3 319 ©Copyright 2011 SMC

; bloc fonctionnel ARATT

; aller retour d'une locomotive sur une voie avec attente

; les entrées booléennes sont les fins de course

; les sorties booléennes sont l'alimentation de la voie (0) et la

direction (1)

; les paramètres sont:

; 0: première temporisation

; 1: durée de la première temporisation

; 2: deuxième temporisation

; 3: durée de la deuxième temporisation

; prédisposition des deux temporisations

${?0}={?1}

${?2}={?3}

; alimenter la voie si pas les fins de course ou si tempo. terminées

set {O0}

res {O0} orr {I0} eor {I1}

set {O0} orr {?0} eor {?2}

; gestion des temporisations

{?0}=({I0})

{?2}=({I1})

; piloter la direction en fonction des fins de course

{O1}=(1)({I0})

{O1}=(0)({I1})

� Example\ fb\fb 3.agn

Supplementary syntax
Supplementary syntax is used to make a calculation on the reference
variable numbers in the « .LIB » file.
The syntax « ~+n » added after a reference to a variable or a
parameter, adds n.
The syntax « ~-n » added after a reference to a variable or a
parameter subtracts n.
The syntax « ~*n » added after a reference to a variable or parameter,
multiplies by n.
It is possible to write many of these commands, one after the other,
they are evaluated from left to right.
This mechanism is useful when a function block parameter needs to
be used to refer to a table of variables.

Examples:
{?0}~+1

referring to the following element the first parameter, for example if the
first parameter is m200 this syntax refers to m201.
M{?2}~*100~+200

referring to the third parameter multiplied by 100 plus 200, for example
if the third parameter is 1 that syntax refers to M 1*100 + 200 thus
M300.

 User manual

autoSIM3 320 ©Copyright 2011 SMC

Evolved function blocks
This functionality is used to create very powerful function blocks with
greater ease than the function blocks managed by files written in literal
language. This programming method uses a functional analysis
approach.
It does not matter which sheet or set of sheets become a function
block (sometimes called encapsulating a program).
The sheet or sheet which describe the functionality of a function block
can access variables which are outside the function block: block
boolean inputs, boolean outputs and parameters.
Principles for use and more importantly the use of external variables is
identical to the old function blocks.

Syntax
To refer a variable outside a function block it is necessary to use a
mnemonic included in the following text: {In} to refer the boolean input
n, {On} to refer the boolean output n, {?n} to refer parameter n. The
mnemonic must start with a letter.

Differentiating between new and old function blocks
The file name written on the function block drawing indicates if it is an
old (managed by an LIB file) or new function block (managed by a
GR7 sheet). The name of an old function block does not have an
extension, for a new one the extension GR 7 must be added. The
sheet containing the code which manages the functionality of the
function block must be entered in the list of project sheets. In the sheet
properties « Function Block » must be selected.

 User manual

autoSIM3 321 ©Copyright 2011 SMC

Example

Contents of VERINB sheet:

BF vérin bistable

10

cde ouverture{i0} . ouvert{i2} cde fermeture{i1} . ferme{i3} . cde ouverture{i0}

20 OUVRIR{O0} 30 FERMER{O1}

ouvert{i2} ferme{i3}

40

duree{?0} /x40/ tempo{?1}

Call up a function block

VERINB.GR7

u100 CDE O O O0

u101 CDE F F O1

i1 O

i0 F

Durée

{10s}

Temporisation

{T0}

VERIN BISTABLE

� Example\fb\Fb with sfc inside.agn

Predefined function blocks
Conversion function blocks are located in the sub-directory « \LIB » of
the directory where AUTOSIM is installed.
The equivalents in macro-instructions are also present.

 User manual

autoSIM3 322 ©Copyright 2011 SMC

To insert a function blocks and its parameters in an application select
« Pre-set function block » from the « Assistant / Function block» dialog
box.

Conversion blocks
ASCTOBIN: converts ASCII to binary
BCDTOBIN: converts BCD to binary
BINTOASC: converts binary to ASCII
BINTOBCD: converts binary to BCD
GRAYTOB: converts gray code to binary
16BINTOM: transfers 16 boolean variables to a word
MTO16 BIN: transfers a word to 16 boolean variables

Time delay blocks
TEMPO: upstream time delay
PULSOR: parallel output
PULSE: time delay pulse

String blocks
STRCMP: comparison
STRCAT: concatenation
STRCPY: copy
STRLEN: calculate the length
STRUPR: set in lower case
STRLWR: set in upper case

Word table blocks
COMP: comparison
COPY: copy
FILL: fill

Advanced techniques

Compiler generated code
This chapter deal with the form of code generated by compilation of
such or that type of program.
The utility « CODELIST.EXE » is used to translate « in clear » a file of
intermediate code « .EQU » (also called pivot language).
We are going to do the following: load and compile the first
programming example in the « Grafcet » chapter: « simple1.agn » from
the directory « Example\grafcet »:

 User manual

autoSIM3 323 ©Copyright 2011 SMC

0 AV1

t1d

1 AV1 , DV1

t1i

Double click on « Generated files/Pivot code » in the browser.
You will obtain the following list of instructions:
:00000000: RES x0 AND i0

:00000002: SET x0 AND b0

:00000004: SET x0 AND x1 AND i1

:00000007: RES x1 AND i1

:00000009: SET x1 AND x0 AND i0

; Le code qui suit a été généré par la compilation

de: 'affectations (actions Grafcet, logigrammes et

ladder)'

:0000000C: EQU o0 ORR @x0 EOR @x1

:0000000F: EQU o23 AND @x1

This represents the translation of a « simple1.agn » application into
low level literal language
The comments indicate where the portions of code came from, this is
useful if an application is composed of multiple sheets.
Obtaining this list of instructions may be useful for answering
questions regarding code generated for some program form or the use
of some language.
In certain cases « critiques », for which it is important to know
information such as « how many cycles does it take before this action
becomes true ? » a step by step way and an in-depth examination of
generated code will prove to be indispensable.

Optimizing generated code
Various levels of optimization are possible.

Optimizing compiler generated code

The compiler optimization option is used to greatly reduce the size of
generated code. This command requires that the compiler manage
fewer lines of low level literal language, consequently increasing
compiling time.

 User manual

autoSIM3 324 ©Copyright 2011 SMC

Depending on the post-processors used, this option involves an
improvement in the size of the code and/or the execution time. It is
advisable to carry out some tests to determine if this command is of
interest or not depending on the nature of the program and the type of
target used.
Normally, it is useful with post-processors for Z targets.

Optimizing post-processor generated code

Each post-processor may possess options for optimizing generated
code. For post-processors which generate construction code, see the
corresponding information.

Optimizing cycle time: reducing the number of time delays on Z
targets

For Z targets, the number of stated time delays directly affects the
cycle time. Try to state the minimum time delays based on the
application requirements.

Optimizing cycle time: canceling scanning of certain parts of the
program

Only targets which accept JSR and RET instruction support this
technique.
Special compilation commands are used to validate or « invalidate »
scanning of certain parts of the program.
They are the sheets which define the portions of applications.
If an application is broken down into four sheets than each one can be
separately « validated » or « invalidate ».
A command « #C(condition) » placed on the sheet conditions the
searching of the sheet up to a sheet containing a « #R » command.

This condition must use the syntax established for the tests.
Example:
If a sheet contains the two commands:
#C(m200=4)

#R

Then everything that it contains will not be executed except word 200
containing 4.

 User
manual

autoSIM3 325 ©Copyright 2011 SMC

Examples

Regarding examples
This part contains a series of examples providing an illustration of the
different programming possibilities offered by AUTOSIM.
All of these examples are located in the « example » sub-directory in
the directory where AUTOSIM is installed.
This section contains the most complete and complex examples
developed for a train model. The description of this model is located at
the beginning of the language reference manual.

Simple grafcet
The first example is a simple line Grafcet

100

i0

110 T0(100)

t0

120 O0,O1,O2

i0

� Example\grafcet\sample1.agn

� the transition in step 100 and step 110 is made up of a test on input 0,

� step 110 activates the time delay 0 for a duration of 10 seconds, this time

delay is used as a transition between step 110 and step 120,

� step 120 activates outputs 0, 1 and 2,

� the complement of input 0 will be the transition between step 120 and

100.

 User
manual

autoSIM3 326 ©Copyright 2011 SMC

Grafcet with an OR divergence

100 O0

i0 i1 i2 i3

110 O1 120 O2 130 O3 140 O4

i4 i5 i6 i7

111 O5 131 O6

i8 i9

112 O7

i10

� Example\grafcet\sample2.agn

This example shows the use of « Or » divergences and convergences.
The number of branches is not limited by the size of the sheet. It is a
non-exclusive « Or » by standard. For example, if inputs 1 and 2 are
active, then steps 120 and 130 will be set to one.

 User
manual

autoSIM3 327 ©Copyright 2011 SMC

 Grafcet with an AND divergence

100

i0

110 O0 130 O1 160 SO2 190 O3

i1 i2

120 140 170 O4

i2 i4

150 O5 180 RO2

i7

� Example\grafcet\sample3.agn

This example shows the use of « And» divergences and
convergences. The number of branches is not limited by the size of the
sheet.. Also note the following points

� a step may not lead to an action (case of steps 100, 120, and 140),

� orders « S » and « R » were used with output o2 (steps 160 and 180),

� the transition between step 160 and 170 is left blank, so it is always true,

the syntax « =1 » could also have been used.

 User
manual

autoSIM3 328 ©Copyright 2011 SMC

Grafcet and synchronization

0 100

�i0 x1 i10 i14

1 110 O0 O4

�x110 i1 i11

O1

i12

O2

i13

O3

� Example\grafcet\sample4.agn

This example shows the possibilities AUTOSIM offers for
synchronizing multiple Grafcets. The transition between step 100 and
110 « �x1 » means « wait for a rising edge on 1 ». The
transition« �x110 » means « wait for a falling edge on step 110 ». The
step by step execution of this program shows the exact evolution of
the variables and their front at each cycle. This makes it possible to
understand exactly what happens during the execution. We can also
see the use of multiple actions associated to step 110, which are
individually conditioned here.

 User
manual

autoSIM3 329 ©Copyright 2011 SMC

 Step setting

10 RC0

i0 100

�20 SX100 i4

110 +C0

30 i1

x120 120

� Example\grafcet\sample5.agn

In this example an order « S » (set to one) has been used to set a
step. AUTOSIM also authorizes setting of a Grafcet integer (see
examples 8 and 9). Again in this example, the step by step execution
lets us understand the exact evolution of the program over time. We
can also see:

� use of an non-looped Grafcet (100, 110, 120),

� use of the order « RC0 » (reset by counter 0),

� use of the order « +C0 » (incremented by counter 0),conditioned by the

rising edge of input 4, due to incrementation by the counter, so it is

necessary that step 100 be active and that a rising edge is detected on input

4.

 User
manual

autoSIM3 330 ©Copyright 2011 SMC

Destination and source steps

�i0.i1

100 O0

�i0

110 O1

�i0

120 O2

�i0

130 O3

�i0

� Example\grafcet\sample6.agn

We have already seen similar forms, where the first step is activated
by another Grafcet. Here activation of step 100 is realized by the
transition « �i0 . i1 » (rising edge of input 0 and input 1). This example
represents a shift register. « i1 » is information to memorize in the
register and « i0 » is the clock which makes the shift progress.
Example 7 is a variation which uses a time delay as a clock.

 User
manual

autoSIM3 331 ©Copyright 2011 SMC

Destination and source steps

�t0.i1

100 O0

�t0

110 O1

�t0

120 O2

�t0 t0

130 O3 1000 T0(10)

�t0

� Example\grafcet\sample7.agn

Here again is the structure of the shift register used in example 6. This
time the shift information is generated by a time delay (t0). « �t0 »
represent the rising edge of the time delay, this information is true
during a cycle when the time delay has finished. Step 1000 manages
the launch of the time delay. The action of this step can be summed up
as: « activate the count if it is not finished, otherwise reset the time
delay». The functionality diagram of the time delays of this manual will
help you to understand the functionality of this program.

 User
manual

autoSIM3 332 ©Copyright 2011 SMC

Setting Grafcets

0 100 VOYANT INIT

�arret urgence bp depart de cycle

1 F100:{} 110 MOTEUR

arret urgence bp fin de cycle

2 F100:{100}

� Example\grafcet\sample8.agn

This example illustrates the use of a Grafcet set command. The order
« F100:{} » means « reset all the Grafcet steps where one of the steps
bears the number 100 ». Order « F100:{100} » is identical but sets
step 100 to 1. We have used symbols for this example:

 User
manual

autoSIM3 333 ©Copyright 2011 SMC

Memorizing Grafcets

#B200

0 100 VOYANT INIT

�arret urgence bp depart de cycle

1 G100:100 110 MOTEUR

bp fin de cycle

2 F100:()

arret urgence

3 F100:100

� Example\grafcet\sample9.agn

This example is a variation of the previous program. The order
« G100:100 » of step 1 memorizes the Grafcet production state before
it is reset. When it starts again the production Grafcet will be put back
in the state or the state it was in before the break, with order
« F100:100 ». The Grafcet production state is memorized starting from
bit 100 (this is the second parameter of orders « F » and « G » which
indicates this site), command « #B200 » reserves bits u100 to u199 for
this type of use. We can see that a « #B102 » command would have
been sufficient here because the production Grafcet only needed two
bits to be memorized (one bit per step).

 User
manual

autoSIM3 334 ©Copyright 2011 SMC

Grafcet and macro-steps

0 O0

i0

1

i1

2 O1

i2

3

i3

E

10 SO10

i10

20 RO10

S

� Example\grafcet\sample11.agn

This example illustrate the use of macro-steps. The «Macro-step 1 »
and « Macro-step 3 » sheets represent the expansion of macro-steps

 User
manual

autoSIM3 335 ©Copyright 2011 SMC

with the input and output steps. Steps 1 and 3 of the «Main program »
sheet are defined as macro-steps. Access to macro-step expansion
display can be done by clicking the left side of the mouse on the
macro-steps.

Linked sheets

0 O0

i0

1 O1

i1

2 O2

i2

3 SUITE

continue

 User
manual

autoSIM3 336 ©Copyright 2011 SMC

4 O3

suite

5 O4

i3

6 O5

i4

7 CONTINUE

� Example\grafcet\sample12.agn

In this example two sheets have been used to write a program. The
symbols « _NEXT_ » and « _CONTINUE_ » have been stated as bits
(see the symbol file) and are used to make a link between the two
Grafcets (this is another synchronization technique that can be used
with AUTOSIM).

 User
manual

autoSIM3 337 ©Copyright 2011 SMC

Flow chart

i0 O O0

i1

i2 & O

i3

i4

i5

i6 &

i7

i8

i9

i10

� Example\logigramme\sample14.agn

The flow chart example shows the use of different blocks: the
assignment block associated to key [0] to the left of the action
rectangle the « no » block associated with key [1] which complements
a signal and the test fixing blocks and « And» and « Or » functions.

 User
manual

autoSIM3 338 ©Copyright 2011 SMC

Grafcet and Flow Chart

0

� bp depart de cycle

1

fin de cycle

bp manuel MOTEUR

étape 1 &

sécurité 1 O

sécutité 2 O

� Example\logigramme\exempl15.agn

In this example a Grafcet and a Flow Chart are used together. The
symbol « _step1_ » used in the flow chart is associated to variable
« x1 ».
This type of programming clearly displays activation conditions of an
output.

 User
manual

autoSIM3 339 ©Copyright 2011 SMC

Literal language box

0 SO0

1

m200=[0] ; m200 est utilisé comme index

res _flag une entrée est à un_

WHILE(_flag une entrée est à un_.m200<100)

IF(i(200))

THEN

set _flag une entrée est à un_

ENDIF

inc m200

ENDWHILE

flag une entrée est à un flag une entrée est à u

2 RO0

� Example\lit\sample16.agn

This program which associates Grafcet and literal language box is for
testing inputs i0 to i99. If one of the inputs is at one, then step 2 is
active and the Grafcet is in a state where all evolution is prohibited.
The symbol. « _flag an input is at one_ » is associated to bit u500. An
indexed addressing is used to scan the 100 inputs. We can also see
the simultaneous use of low level and extended literal language.

 User
manual

autoSIM3 340 ©Copyright 2011 SMC

Organizational chart

IF(_bp validation_)

bta _entrée roue codeuse_ ; fin

ana %0000000000000111

sta _valeur roue codeuse_

� Example\organigramme\sample18.agn

This example shows the use of an organizational chart for effecting an
algorithmic and numeric treatment. Here three inputs from a code
wheel is read and stored in a word if a validation input is active.

 User
manual

autoSIM3 341 ©Copyright 2011 SMC

Organizational chart

m200=[10]

o(200)=(1)

m200=[m200+1]

IF(m200=30)

; Fin de la

; boucle

� Example\organigramme\sample19.agn

This second example of an organizational chart creates a loop
structure which is used to set a series of outputs (o10 to o29) with an
indirect addressing(« o(200) »).

 User
manual

autoSIM3 342 ©Copyright 2011 SMC

Function block

i16 RO0

i17 & SO0

COMPTAGE

i0 R.A.Z.

i1 COMPTAGE

VAL. INIT

{100}

BORNE MAX

{110}

VARIABLE

{m200}

� Example\bf\sample20.agn

; Gestion de l'entrée de RAZ

IF({I0})

 THEN

 {?2}=[{?0}]

 ENDIF

; Gestion de l'entrée de comptage

IF(#{I1})

 THEN

 {?2}=[{?2}+1]

 ENDIF

; Teste la borne maxi

IF({?2}={?1})

 THEN

 {O0}=(1)

 {?2}=[{?0}]

 ENDIF

 ELSE

 {O0}=(0)

 ENDIF

count lib (included in project resources)

 User
manual

autoSIM3 343 ©Copyright 2011 SMC

This example illustrates the use of a function block. The functions of
the« COUNT » block that we have defined here are as follows:

� the count will start from an init value and will finish at a maximum limit

value

� while the count value waits for the maximum limit it will be set the initial

value and the block output will pass to one during a program cycle.,

� the block will have a RAZ boolean input and a count input on the rising

edge.

Function block

OU_EXCLU OU_EXCLU

i0

=1 =1

i1

OU_EXCLU

i2

=1

i3

OU_EXCLU OU_EXCLU

i4 O0

=1 =1

i5

� Example\bf\sample21.agn

; Ou exclusif
neq {o0} orr /{i0} eor {i1} orr {i0} eor /{i1}

ou_exclu.lib (included in the project resources)

This second example of a function block shows the multiple use of the
same block. The « EXCLUSIVE_OR » block creates an exclusive or
between the two boolean inputs This example uses 5 blocks to create
an exclusive or among 6 inputs (i0 à i5). The « EXCLUSIVE_OR.LIB »
listed below supports the functionality of the block. The exclusive or
boolean equation is as follows: « (i0./i1)+(/i0.i1) ».
The equivalent form used here makes it possible to code the equation
on a single line of low level literal language without using intermediate
variables.

 User
manual

autoSIM3 344 ©Copyright 2011 SMC

Ladder

i0 i7 O0

i1 i8

i2 i9

i3 i10 O1

i4 i11 O2

i5 i12 O3

i6 i13 O4

� Example\laddersample22.agn

This example illustrates the use of ladder programming.

