autoSIM-200

The shortest way to
automation

0'2A 00T-NISOV

USER MANUAL

INTERNATIONAL TRAINING

QO

O

SI u IC User manual

Installation

If you are installing AUTOSIM from the AUTOSIM CD-ROM, place it in
your CD-ROM drive.

The installation is launched automatically.

If this does not occur, launch the “Setup.exe” executable which is in the
CD-ROM root.

Configuration required

PC compatible computer, with:

- WINDOWS 98 SE or WINDOWS ME or WINDOWS 2000 or
WINDOWS XP or WINDOWS 7 or WINDOWS 2003 or WINDOWS
VISTA operating system,

- 256 MB memory (depending on the operating system: the operating
system itself may require more memory),

- graphics board with a resolution of at least 1024 x 768 in 65536 colors.

Installation in a network

AUTOSIM can be installed in a network environment.

Execute the installation procedure on the “server” PC (make sure you
have all of the access rights when you carry out the procedure).

To launch AUTOSIM, on the client PCs, create a shortcut to the
“autom8.exe” executable of the AUTOSIM installation directory on the
server PC.

Refer to the chapter “additional information on installing AUTOSIM in a

network environment” for more information about installing AUTOSIM
and licenses in a network environment.

autoSIMP 3 ©Copyright 2011 SMC

O

SVC« User manual
New features of AUTOSIM

Increased integration of the Grafcet 60848 standard

The new elements of this standard can now be accessed in the
contextual program editing menus.

Compatibility of files

The files generated by all of the AUTOSIM? versions can be re-read by
all of the AUTOSIM® versions.

Physical engine integrated to IRIS3D

The TOKAMAK motor is integrated to IRIS3D. This enables an extremely
realistic simulation of the 3D operational units to be obtained.

Enhanced 3D object handling in IRIS3D

The saving and re-reading of objects and behaviors allows you to
manage libraries of easily reusable objects. Predefined objects
(cylinders, conveyor belts, etc) are proposed as standard. A 3D
operational unit simulation application can now be created in just a
couple of mouse clicks.

Improved links between AUTOSIM and IRIS3D objects

Enhanced modes allow you to easily handle displacements of complex
objects between AUTOSIM and IRIS3D. An AUTOSIM variable can, for
example, give the speed of an object directly. Position reporting can also
be simulated in the manner of an absolute encoder.

Textured IRIS3D objects

Textured objects now provide IRIS3D with extraordinarily realistic
rendering.

autoSIMP 4 ©Copyright 2011 SMC

P
@SVC User manual

Drag and drop from IRIS3D to AUTOSIM sheets

A right click on the IRIS3D objects allows you to access the list of
variables and “drag” a reference over to a programming sheet.

SIMULA user-definable object

SIMULA users will appreciate the new user-definable object, which will
allow you to create your own objects.
(See the section of this manual devoted to SIMULA)

Drag and drop from SIMULA to AUTOSIM sheets

A click on the SIMULA obijects allows you to “drag” a reference over to a
programming sheet.

Improvements to the environment

Finally, numerous improvements to the environment, such as the
magnifying glass in the design palette, the simplified palettes in
“beginner” mode, or personalizing menus make AUTOSIM even more
user-friendly.

autoSIMP 5 ©Copyright 2011 SMC

O

SMC

User manual

Environment

General views

4 AUTOSIM Y¥3.03- Proyecto2 E @@

fychivo Edidén Visualizaciin Programa Herramientas Vertana ?

AHES @ 0 B
Proyecto X TOOI]

= n Proyecto: [sin nombre) bars
Folos
Q} Simbalos
%3 Confuatiin
-G Documentacicn
-y archivos generados
Pugsta a punto
@ lis
& Sinula
2] Recusos
6 biclos ertemos

Browser

Workspace
1 '[5 Navegador | < Blancos ﬁPa\eta
Tabs
X |Bienwenida a AUTOSIM V303, pragrama i
Message % SVC

E WI ndOW — INTERNATIONAL TRAINING ;
g‘ ‘ ‘ | [\\nfnsﬂtompilamén)\Puesta 3 punto/ l

HUM SMCES 231350

AUTOSIM’s main window in “Expert” mode

The environment is fully customizable. The tool bars can be moved (by

dragging their moving handle JJ) and parameterized (menu
“Tools/Customize the environment”).

The state of the environment is saved when you quit it. This state can
also be saved in a project file (see the project options).

autoSIMP 6 ©Copyright 2011 SMC

S
2

User manual

Selecting targets in expert mode

At the bottom of the browser window there is a “Targets” tab, allowing
access to the list of post-processors installed.

Current | Mame | wersian The active target is indicated with a red tick. Access

@ o A to targets displayed in grey is not authorized for the
license installed (see the “Licenses” chapter for

¢y P7(Tsx37&Ts.. 000 more details). To change the current target, double-
click on the corresponding line. The targets shown in

Bgp P2 £.000 this list are the ones selected at installation time. If
the target you want to use is not shown in this list,

W STEP7(s7200) 000 re-launch the AUTOSIM installation and install it.

ii neB 5.000

i GE-FANUC 5.000

Palettes

At the bottom of the browser window there is a “Palette” tab, allowing
access to program design elements.

Grafcet elements The palette gives a set of elements that can be
O] selected and placed on the sheets. To select an
element, left-click with the mouse in the palette,
expand the selection, release the mouse button,
click in the area selected and move the area
towards the sheet.

The palette also contains the list of symbols for
— the project. You can grab them and drag them
onto a test or an action on a sheet.

A magnifying glass is automatically shown when
the elements displayed are small.

-

e

|

l

autoSIMP 7 ©Copyright 2011 SMC

S
2

User manual

Displaying or hiding the project window or message window

Select the « Project » or « Messages » option from the « Window »
menu.

Displaying the work space in full screen mode

Select the « Full screen » option from the « Display » menu. Click on
to exit full screen mode.

Keyboard shortcuts

Keyboard shortcuts are written in the menus. « Masked » shortcuts can
also be used:

CTRL + ALT + F8 Save the project in executable
format

CTRL + ALT + F9 Save the project

CTRL + ALT + F10 Access project properties

CTRL + ALT + F11 Display or hide AUTOSIM window

Parameters can be set for the entire environment; its state is saved when
you close AUTOSIM. Environment windows can be hidden. The
« Windows » menu is used to display them again. The work space can
be displayed in full screen mode. The tabs at the bottom of the browser
window are used to access selection for the current post-processor and
the graphics palette.

autoSIMP 8 ©Copyright 2011 SMC

O

SI V IC User manual

Licenses

A license establishes AUTOSIM user rights. The following elements are
established by license:

- the number of all or none inputs/outputs that can be used,

- post-processors that can be used,

- the number of users (only for network licenses).

Reqistering a license

When you install AUTOSIM, you can use it for free for a period of 40
days.

You must register your license within 40 days.
To register your license, send SMC:

- the serial number printed on the label glued to the software box, or
the reference of your delivery note or order form,

- the user code provided with the software indicating the PC where
you have installed the product.

You will then receive an enable code (also called validation code).
The « License » option in the AUTOSIM « File » menu can be used to

display the status of your license and obtain a user code (click on
« Registering the license »).

Eztado de la licencia de uso de AUTOSIM en este puesto
" alid werzion
Sernal number : SMCES 231350
AUTORSIM
WIRTAL UMIVERSE
Targets : All
Modificar la licencia | Dezplazar la licencia a otro puesto |
Conectarse a una licencia red | | Cerrar |

License status.

autoSIMP 9 ©Copyright 2011 SMC

O

SI u IC User manual

A user code is valid for a period of 10 days.

So a maximum period of 10 days can pass from when you send a user
code to SMC and when you receive an enable code provided by SMC.

Sending a user code to SMC

There are various methods you can use. Exchanging codes by e-mail is
highly recommended as it limits the risk of error.

A single error in the code will prevent the license from being registered.

Sending a file by e-mail (the best solution)

Guardar 0 modificar una proteccion

Ahora podra registrar su licencia. Para ello ziga estos pasos:
- Haga click en "Reaqistrar via ‘Web".

- Introduzea el ndmern de serie [Senal number] v la contrazefia [Pazsword] proporcionadas. El cadigo de usuarnio [User
code] aparecera automaticamente; de lo contrario copielo en esta pantalla v péguelo.

- Haga click en ""Yalidate". Copie en codigo que aparezca, v pégueln en esta ventana haciendo click en "Feagar un
cadign de validacion desde el partapapeles.

Ante cualguier problema, contacte con nozotros en training@smectraining. com

CODIGO USUARIO, ATENCION : ‘8° ES CERO ¥ ‘0' ES LA LETRA
|HQH2H |'?5FIS3 |I.IH’5‘1B |12G2Q |UQHUL |UE2BR |81252 |FIJQLS |4HGHH |RBG3R |GB

LCopiar el Pegar un codigo

cadign de de validacidn Obtener un
LizLarnio en el desde el nueyo codigo
portapapeles portapapeles

Cadigo de validacion

| | | | | | | | | | |

License registration dialogue box

To generate a file containing your user code, click on « Save user code
in a file ». You can then transmit the file with « .a8u » extension as an
attachment and send it to the address training@smctraining.com.

autoSIM® 10 ©Copyright 2011 SMC

P
"@SVC User manual

Copying the user code in an e-mail message

By clicking on « Copy user code to clipboard », you can then paste the
code in the body of the message and transmit it to the e-mail address
training@smctraining.com.

By telephone (highly unadvisable)

By telephoning +34 945 00 10 33. Be sure to differentiate between the
letter « O » and number zero. Be careful of consonants which are difficult
to tell apart on the telephone (for example « S » and « F »).

Entering the validation/enable code

Validating by a e-mail received file

If you have received an « .a8v » file by e-mail, save the file on your hard
disk, click on « Read a validation code from a file » and select the file.

Validating for a code received in the text of an e-mail

Select the code in the message text (make sure you only select the code
and do not add any spaces to the end). Click on « Paste a validation
code from the clipboard ».

Validating for a code received by fax or telephone
Enter the code in the spaces under the title « Validation code ».

Modifying a license

Modification of a license Involves changing the elements authorized by
the license (for example adding a post-processor).
The license modification procedure is identical to registration.

a license from one computer to another

This procedure is more complex. The instructions below must be
scrupulously followed to obtain good results. In the instructions below,
« source » PC indicates the computer with the license and the « target »
PC is the PC where the license needs to be moved.

1- if it has not already been done, install AUTOSIM on the target PC,

autoSIMP 11 ©Copyright 2011 SMC

O

SI u IC User manual

2- generate an « .a8u » user code file on the target PC and move this
file to the source PC (for example on a floppy disk),

3- on the source PC, select the « Move the license to another place »
option,

Desplazar la licencia a otro PC

Para poder desplazar la licencia instalada en este ordenador, debe obtener un codign de wsuario a partir del ordenadaor
de destina.

Cadigo de uzuarnio del ardenador de desting, atencion: '0' ez CERD w'0" ez la leftra

Leer un cadigo Pegar un

de Liguarnio cadign de
dezde un uzuario desde
archiva el portapapeles

Cadigo de walidacian para el ordenador de desting, atencion; '0' es CERD p'0" ez la letra

| | | | | | | | | | |
Anular |

Dialogue box for moving a license

N
1

on the source PC, click on « Read a user code from a file » and
select the « .a8u » file that came from the target PC,

5- on the source PC, click on « Move the license »,

6- on the source PC, click on « Save the validation code in a file »,
recopy the generated « .a8v » file to the target PC,

on the target PC, click on « Read a validation code from a file »
and select the « .a8v » file that came from the source PC.

~
1

Network licenses

The « akey8.exe » executable manages the network license. This
executable must be launched from one of the network computers. The
network must be able to be used with TCP IP protocol. When launched,
the network license manager is hidden and only a # icon appears in the
WINDOWS keybar. To display the network license manager window,
double click on the # icon in the keybar.

autoSIM® 12 ©Copyright 2011 SMC

User manual

X

Add 3 license | Double click on the licenses to change them Parameters | Close | Hide I

The network license manager

Up to 16 different licenses can be managed by the network license
manager. A network license is characterized by a number of users and a
type of copyright (number of all or none inputs/outputs and useable post-
processors). For each license the number of possible user/s, number of
connected user/s and list of connected users (using AUTOSIM) is
displayed in a tree format attached to each license. Each license is
associated to a port number (a numeric value starting from 5000 by
default). The first port number used can be configured by clicking on
« Parameters ».

Adding a network license

You can add a license by clicking on « Add a license ». The license
registration principle is the same as for single license versions.

autoSIMP 13 ©Copyright 2011 SMC

% SNC

Modifying a license
Double click on the licenses to modify them. The license modification
procedure is the identical to that used for single license versions.

User manual

Connecting to client stations

Click on « Connect to a network license » to connect a client station to a
network license.

Conexion a una proteccion red

Yerfigue i el ordenador donde esta instalada la proteccion red ha arrancado, sila proteccidn es valida v si el
geshionador de clave red AKEY3.EXE e ejecuta en este ordenador.

Maombre del PC donde estd instalada la proteccidn ; ez el nombre definido en la red para el ordenador donde e encuentra
la proteccion.

|stn:u:kage

Puerto [debe coincidir con el puerto definido en el PC donde ze encuentra la proteccian), este valor ezta predeterminadao
en BO00,

5000

Fazzword [may be blank)

Connecting to a network license

The PC name (the one from the network) where the « akey7.exe » was
launched must be provided as well as the port number corresponding to
the desired license.

You must register your license with SMC (training@smctraining.com) by
sending your user code by e-mail (« File/License » menu. The network
license manager is used to manage multiple licenses on TCP IP network
PC's.

autoSIMP 14 ©Copyright 2011 SMC

S
2

User manual

Additional information on installing AUTOSIM in a network

environment

General information

Two aspects of the AUTOSIM® installation have to be considered:
installing files on the one hand and managing licenses on the other.
These two aspects are completely separate: you can choose to install
the files either on the hard disk of the client PCs or else on a file server
and, completely independently of this, choose to install either a license
locally on a PC or else a network license on a network license manager.

Installing AUTOSIM?® on a file server

Benefit: the AUTOSIM® files are installed just once on a file server, and
updates are simplified.

Procedure on the file server: install AUTOSIM®. Rights needed: read-
access is sufficient.

Procedure on the client workstations: create a shortcut to the
“autom8.exe” executable, which is in the AUTOSIM? installation directory
on the file server.

Installing one or more AUTOSIM? licenses on a network license manager

Benefit: the licenses are no longer restricted to one PC but can be used
by all of the PCs connected to the network (floating licenses).

Principle: one or more licenses are installed on one of the network’s
PCs. A license authorizes from 1 to n users. AUTOSIM® may be
launched on client PCs upto the maximum number of users. A license
has the same features for all users in terms of the number of
inputs/outputs that can be used and the types of post-processors that
can be used. If several configurations (several types of licenses) are
needed, then as many licenses will be created as there are different

autoSIM® 15 ©Copyright 2011 SMC

o
‘—‘//I—-SVD User manual

types of configurations. When AUTOSIM® is launched on the client PCs,
a connection will be created to one or other of the licenses depending on
the features that are wanted.

Actual example: setting up a network of 4 16 1+16 O PL72 licenses, 4 16
I+16 O PL7 licenses + 2 unlimited /O PL7 licenses. For this: 3 licenses
will be created on the network license manager: 1 license for 4 16 [+16 O
PL72 users, 1 license for4 16 |+16 O PL7 users, 1 license for 2 unlimited
I/O PL7 users.

Where to install the network license manager: on one of the network’s
PCs (it does not have to be the server) which must be running all the
time (whenever a user would like to use AUTOSIM?).

Technical constraints: the network must support TCP/IP, the PC where
the network license manager is located must be able to run a WINDOWS
program (application or service).

Installation on the network license manager: on the PC where the
network licenses are going to be managed, install the main AUTOSIM?®
module + the network license manager.

Registering one or more licenses on the network license manager:
launch the network license manager: (AKEY8.EXE executable, located in
the AUTOSIM?® installation directory). When launched, the license
manager sets up an icon in the bottom right of the WINDOWS task bar.
Left-click once with the mouse to open the window.

Click on “Add a license” to add a license.

Click on “Save the user code in a file” to generate an .n8u file that you
will e-mail to us at the address “training@smctraining.com ”: we will send
back an .n8v file that you will connect up by clicking on the “Read a
validation code from a file” button.

The licenses installed in this way will then be shown in the network
license manager with the serial number and characteristics of the license
and the associated port number. It is this port number that will allow
clients to connect to a specific license.

Installation on the client workstations: launch AUTOSIM?®, and in the “File
/ License” menu select “Connect to a network license”.

autoSIMP 16 ©Copyright 2011 SMC

P
‘—‘//I-SVD User manual

Enter the name of the PC where the network license manager is running
(or its IP address) and the port number (this number makes it possible to
identify the license you want to connect to, if there is more than one).

It is also possible to add an argument in the AUTOSIM® launch shortcut
in order to force connection to one network license.

The argument is:

/NETLICENSE=<name of the PC where the network license manager is
located>,<port>

Make sure that “NETLICENSE” is correctly spelled: S not C at the end.
For example:
/NETLICENSE=MYSERVER,5001

Several launch shortcuts can be created in order to connect to different
licenses.

Possible problems: if you use a firewall, make sure access is authorized
to the ports used by the network license manager (those displayed in the
network license manager).

Installing the network license manager as a service under WINDOWS
NT, 2000, XP, 2003 and VISTA.

Displaying the status of the licenses remotely: to display the status of the
network license manager on a different PC from the one on which the
network license manager has been launched (or if the “service” version
of the network license manager is being used), use the
“spya8protnet.exe” utility, which is located in the AUTOSIM?® installation
directory.

Installing the network license server as a service

The “NT Service” key server allows the AUTOSIM?® network licenses to
be managed on a WINDOWS NT4, 2000, 2003, XP or VISTA
workstation without opening a session. Unlike the AKEY8.EXE
“executable” version, AKEY8NT.EXE does not allow either the
protections or the connected users to be displayed.

autoSIMP 17 ©Copyright 2011 SMC

O

SI u IC User manual

Before installing the key server as an “NT service”, you are
recommended to make sure that the key server works properly with the
“executable” version: AKEY8.EXE.

Launch the “akey8nt —i” command line to install the NT key server
service. The AKEYBNT.EXE executable is installed in the AUTOSIM
installation directory.

So that the service starts automatically:
- under WINDOWS NT4: in the “Start/Parameters/Configuration
Panel” menu, select the “Services” icon the “AKEY8” line, click on
the start button and select the “Automatic” button.

Reboot your PC so that the key server is activated.

- under WINDOWS 2000, 2003, XP or VISTA: in the
“Start/Parameters/Configuration Panel” menu, select the
“Administrative Tools” icon then the “Services” icon. Right-click with
the mouse on the “AKEY8” line and select “properties”. In the

“Startup Type” option, select “Automatic”. In the “Recovery” tab,
select “Restart the service” in the “First Failure” area.

Uninstallation

Launch the “akey8nt —u” command to uninstall the NT key server
service.

Errors

After having uninstalled the AKEY8BNT.EXE service, use AKEY8.EXE to
determine the cause of any malfunctions.

autoSIM® 18 ©Copyright 2011 SMC

O

SVC’ User manual
The project

AUTOSIM? is strongly based on the idea of a project. A project groups
together the elements that compose an application. The browser
displays all the project elements (sheets, symbols, configuration, IRIS
objects etc.) in a tree format.

The new file format of AUTOSIM? (files with « .AGN » extension) includes
all project elements.

When you save an « .AGN » file you are assured of saving all the
elements of an application. You can easily and effectively interchange
applications created with AUTOSIM.

« .AGN » files are compacted with « ZIP » technology, they do not need
to be compressed to be interchanged, their size is already optimized.

All the files generated by AUTOSIM® can be re-read with all of the
versions of AUTOSIM?: upward and downward compatibility.

Files generated with AUTOSIM

The files created with AUTOSIM’ can be opened directly in AUTOSIM®,

Importing an application from an earlier version of AUTOSIM

version 2 or earlier

You need to import all of the sheets (“*.GR7” files) and any symbol file
(“SYM” file). To do this, use the import procedures described in the
following chapters.

Generating a free distribution executable file

The « Generate an executable » command from the « File » menu
is used to generate an executable starting from a project in
progress (an « .EXE » file executable on a PC with WINDOWS).
The AUTOSIM « viewer » is automatically integrated with the
generated executable (the executable user does not need
AUTOSIM). This viewer makes it possible to use the application
without modifying it. You can easily distribute your applications.
The generated executable is not covered by copyright. This

autoSIM® 19 ©Copyright 2011 SMC

P
-‘-//’-SVC User manual

technique is normally wused for producing a supervising
application.

Modifying project properties

With the right side of the mouse click on the « Project» element on the
browser and select « Properties » from the menu.

Modifying security options
You can restrict reading or modification access to a project by
passwords.

Advanced options

« Save the environment aspect with the project »: if checked, the position
of the windows and the aspect of the toolbars are saved in the « .AGN »
file. When the project is opened, these elements are reproduced.

« Hide the main window upon launching ... »: if checked, the AUTOSIM
window is hidden when the project is opened. Only IRIS objects
incorporated in the project will be displayed. This option is normally used
to create « package » applications which only leave IRIS objects
displayed. Use the [CTRL] + [F11] keys to redisplay the AUTOSIM
window.

The other options are used to change the display of the AUTOSIM
window when a project is opened.

User interface

« Block IRIS object configuration »: if checked, a user cannot modify
IRIS object configuration.

The other options are used to modify the behavior of the user interface.

Model

« This project is a document model »: if checked, when opened all the
options and the documents it contains act as a model for the creation of
a new project. This functionality is used to create standard configuration
which can be uploaded when AUTOSIM is launched (for example a
default symbol file or a default processor configuration).

Defining a mode

To define a mode that can be used when launching AUTOSIM (like the
“Expert” and “Beginner” modes), save a project model in the “models”
sub-directory of the AUTOSIM installation directory. An image can be

autoSIMP 20 ©Copyright 2011 SMC

% SNC

linked to a model. To do this, create a “jpg” format file with the same
name as the “.agn” file. This file must have the following dimensions: 120
pixels wide by 90 pixels high.

User manual

Automatic GO

«Automatic go at project launch »: if checked, the application is
automatically run when a project is opened.

The project is used to group together the elements of an AUTOSIM
application. Once regrouped, the elements form a compact file with
« .AGN » extension. The project models are used to be able to easily
manage different software configurations. Generation of executables
makes it easy to distribute applications.

autoSIMP 21 ©Copyright 2011 SMC

O

SVD’ User manual
The Browser

A central element for application
management, the browser is used for

Proyecto =

= !: Proyecta : [zin nombre]

¢ Foliog
) Simbolos
i) Configuracin
=~ Post-procezadores
+- | PC
+. 7T STEP7 [57200]
STEPY [57300)
OMROM
ALLEW-BRADLEY
TwID0
== MITSUBISHI
MITSUBISHI-O
k4340
= 571200
[CJ Opciones del compilador
A3 Documentacidn
L] Impresion
_# archivos generados
[] Cadigo pivate
[] Referencias cruzadas
[] Check
¥ _-_| STEFY [S7200)
¥ _-_| STEFY [S7300)
¥ _-_| QMRON
¥ _-_| ALLEM-BRADLEY
¥ _-_| TwWIDD
¥
¥
¥

+
+
+
+
+
+
+
+

_'_I MITSUBISHI
_'_I MITSUBISHI-O
4] M40

4] 571200

$~ Puesta a punto

a0 s

& Simula

[Recursos

[Madulos externos

.[j Navegadar | <5 Blancos ?Paleta

Browser tree

autoSIM®

fast access to different application
elements: sheets, symbols,
configuration, printing, IRIS objects
etc.

The « + » and « - » icons are used to
develop or retract project elements.

Actions on the browser are effected
by double clicking on the elements
(opens the element) or by clicking
with the right side of the mouse
(adds a new element to a project,
special action on an element etc.).

Certain operations are effected by
dragging and dropping the elements
and moving them on the browser.

The colors (generally called up at the
bottom of documents in the work
space) are used to identify families of
elements.

22 ©Copyright 2011 SMC

O

SI V IC User manual

A sheet is a page where a program or part of a program is designed.

Using sheets is extremely simplified in AUTOSIM®. The sheet chaining
orders needed in the previous versions are no longer used. For multiple
sheets to be compiled together, they only need to be in the project.

The icons associated to the sheets are shown below:

- normal sheet,

- normal sheet (excluding compilation),

- sheet containing a macro-step expansion,

- sheet containing a function block program,

- sheet containing a key,

- sheet containing a key (excluding compilation),

- sheet containing an encapsulation,
Icons are marked with a cross indicating a closed sheet (not displayed in
the work space). Double clicking on this type of icon opens (displays) the
associated sheet.

Adding a new sheet

With the right side of the mouse click on the « Sheets » element on the
browser then select « Add a new sheet ».

Select the sheet size (XXL is the

recommended format, the other
formats are for older versions of
AUTOSIM, GEMMA is only used

. Size [the dimensiong of the surface of the folder, #3<L can be uzed to create
for Creat/ng GEMMA mOde/S)- wery large folders [recommended). To create a Gemma select "Gemma'.
The sheet can be given any | I¥Llveylagefders) =
name, but each project sheet
must have its own name. Cornrments (for example the last modifications, the author et ...].

Create BAA/2002.
. Edit B/B/2002,
The comment area is up to your

discretion for modifications or
other information relative to each
sheet.

Set the charactenstics of the new falder, itz size, itz name plus
any comments. v'ou can edit all of these later.

LCancel

autoSIM® 23 ©Copyright 2011 SMC

O

SI V IC : User manual

Importing old AUTOSIM version sheets, importing CADEPA sheets

With the right side of the mouse click on the « Sheets » element on the
browser then select « Add one or more existing sheets ».

Importar uno o varios folios E]EI

Buscar en: |_] Mis documentos j = &5 E8-

[Z¥Bluetonth Exchange Folder !

=
uﬁ ()0l WebCam Central

D ocumentos [CIIEM
Iecientes dMi rniisica

@ ﬁMis imagenes
-5 B Mis videos
E scritoria [My Virtual Machines
(=) Vegas Movie Studio HD Platinum 11,0 Proyectos

z @l
(]

Miz sitios de red
Mornbre: | j Abrir |
Tipo: |F|:|Ii0 AJTOSIM [%.ar7) ﬂ Cancelar

Selecting one or more sheets to import.

From the « Type » list select « AUTOSIM » or « CADEPA » for the sheet
type to import then click on OK.

There are some restrictions for importing CADEPA sheets:

- the step numbers must be individual (the same step number
cannot be used on multiple sheets),

- references must be converted with links to CADEPA before being
able to import them.

By keeping the [CTRL] key pressed down, you can select multiple
sheets.

Modifying the sheet compilation order

The sheets are compiled in the order they are listed in for the project. To
modify this order, click on the sheet with the left side of the mouse on the
browser and move it in the list.

autoSIMP 24 ©Copyright 2011 SMC

o
‘—‘//I-SVD User manual

Deleting a sheet from the list

With the right side of the mouse click the sheet to be deleted on the
browser and select « Delete » from the menu.

Exporting a sheet to a « .GR7 » file

With the right side of the mouse click the sheet to be deleted on the
browser and select « Export » from the menu.

Copying, Cutting, Pasting a sheet

With the right side of the mouse click the sheet on the browser and
select « Copy/cut » from the menu. To paste, with the right side of the
mouse click on the « Sheet » element on the browser and select
« Paste ».

This option makes it possible to copy or transfer sheets from one project
to another.

Renaming a sheet
See « Modifying properties » below.

Modifying sheet properties.
With the right side of the mouse click the sheet on the browser and
select « Properties » from the menu.

autoSIMP 25 ©Copyright 2011 SMC

O

SI V IC User manual

Folder properties You can modlfy the
sheet name, the syntax

M ame .
Foider 1 used for literal

language and variable
names. The « Do not
compile this sheet »

Size [the dimenzionz of the folder surface]

il | fold - . .
| - [vgilaig folders | option s used to
Literal language———— [~ Folder type exclude the sheet from
o : S
pa ELII:;;IEJGSEN " Mormal the compilation. The
" Macro-step expansion « D/sp/ay in GEMMA
—arables names " Function black format» option is only
" Task . ;
available if the sheet
i |ECTI131-3 f s GEMMA
% AUTOMGEN and IECTT31- | | [Do not compile this folder is used to display and
ide ; I | Displag i GERRENGmat modify a sheet in
o & LZE O
[inputsfoutputs except set GEMMA format. The
aymbols « Block the of use
inputs/outputs other
Comments [for example the last modifications, the author ete ...]. than set symbo/s »
Create £/6/2002. option blocks the use of

Edit 6/6/2002. i, %i, 0 %Qq variables

not attributed to
symbols. Access to the
This dislogue box displays the falder properties. sheet can be protected
by a password. -The

P | « comments » area Is

left to your discretion.

The list of symbols provides the correspondence between « symbol »
names and variable names. A project may only have one symbol table.

Creating a symbol table

With the right side of the mouse click on the « Symbols» element on the
browser and select « Create a symbol table » from the menu.

Importing a symbol table

With the right side of the mouse click on the « Symbols» element on the
browser and select « Import a symbol table » from the menu.

autoSIM® 26 ©Copyright 2011 SMC

O

SVC* User manual
Configuration

Post-processors

This section contains all the post-processor configuration elements (see
the post-processor manual for more information).

Compiler options
Double click on this element to modify the settings of compiler options.

Documentation

This is used to access the file printing function (double click on the
« Print » element. You can print a complete file composed of an end
paper, cross reference table, symbol list and sheets. The print setup
function is used to display all these elements.

autoSIMP 27 ©Copyright 2011 SMC

O

SI u IC User manual

Generated files

Generating the instruction list in pivot code

By double clicking on « Pivot code » you generate a list in low level literal
language (AUTOSIM pivot code). Viewing of the generated code is
normally reserved for specialists involved in understanding the
translation methods used by the compiler.

Generating the cross reference list

Double clicking on the « Cross reference » element generates and
displays the list of variables used in an application with any associated
processor variables and the name of or sheet(s) where they are used.

Post-processors

The other elements concern the files generated by the post-processors:
instruction lists are in processor language.

Contains the tools to display and modify the state of the variables.

Viewing and modifying a variable or variable table

With the right side of the mouse click on « Settings » and select
« Monitoring » to open an element where you can see the state of a
variable or variable table.

of another
variable

A monitoring window.

autoSIM® 28 ©Copyright 2011 SMC

User manual

A

The monitoring window in “Variables Table” mode

autoSIM®

Click on this button to display
the expanded information
(automaton symbols and
names of variables)
associated with each variable

Re-size the window by
dragging one of the
edges in order to see
more or fewer variables

©Copyright 2011 SMC

O

SI u IC User manual

IRIS objects

IRIS 2D objects are used to create consoles, supervision applications
and simulation applications of 2D operating parts. IRIS 3D is used to
create simulation applications of 3D operating parts. Each IRIS 2D object
appears in the project tree (see the chapters IRIS 2D references and
IRIS 3D references for additional information).

Adding an IRIS 2D object

Click with the right side of the mouse on « Add an IRIS 2D object ». The
object selection assistant is used to select it and set its parameters.

- by objects
-5 Preset objects
=- Bazic objects

Conzole

Button and light

Object

Digital value

Screen, keyboard, meszage st
Sound

Data archive

Frogram

Dialogue box

Analog value

Parameters Yalues

Presview i i
|1ze the tree to zelect an object. Modify any

parameters if neceszany [by clicking on the elementz
iti the "valuez" colurn] then click an "Open' to add
the object to a project.

@ | LCancel | Open I

Selection assistant for an IRIS 2D object

autoSIM® 30 ©Copyright 2011 SMC

O

S| V IC : User manual

Deleting an IRIS 2D object

With the right side of the mouse click on the IRIS object on the browser
and select « Delete » from the menu.

Displaying or hiding an IRIS 2D object
With the right side of the mouse click on the IRIS object on the browser
and select « Display/hide » from the menu.

Cutting, copying, pasting an IRIS 2D object

With the right side of the mouse click on the IRIS object on the browser
and select « Copy » or « Cut » from the menu.

To paste, with the right side of the mouse click on the « Sheet » element
on the browser and select « Paste ».

To paste an IRIS object on a console, select « Paste» from the console
menu or click with the right side of the mouse on the console on the
browser and select « Paste».

Adding a new IRIS 2D object on a console

Select « Add an object » from the console menu or click with the right
side of the mouse on the console on the browser and select « Add an
object on the console » from the menu (for more information on the
console see the chapter « Console » object)

Modifying the properties of an IRIS 2D object

With the right side of the mouse click on the IRIS object on the browser
and select « Properties ». For higher level objects (parent objects),
special properties can be accessed:

autoSIMP 31 ©Copyright 2011 SMC

N
2

User manual

Propiedades del ohjeto IRIS 2D

YVizibilidad
i+ Mizible al lanzarmientc

" Mo vigible al lanzamienta
T Yizsible en visualizacion dindmica solamente
I Yizible fuera de visualizacidn dindmica solamente

Inicializacion

[Reinicializar al pazar a visualizacidn dinamica

£

(traz propiedades del objeta .. | Anwlar | ok

Properties of high level objects

Display establishes under which conditions the object is displayed or
hidden. The reinstallation option is used to return an object to its initial
state when dynamic display is launched (normally used for OP simulation
applications).

Setting an object model accessible on the assistant

With the right side of the mouse click on the IRIS object on the browser
and select « Save as model » from the menu.

Salvado de un modelo de objeto IRIS ZD

[] POSK 478 # poszition [in pisel)

[] PosY 121 " pogition [in pixel)

[] wIDTH 542 Obiject width [in pixel)

[] HEIGHT 539 Obiet height (in pizel]

[] HELP Help text

[] BUBELE Infarmation [bubble] text b

[] IDENT 0 Object ID

[] BORDER 1 Congole has border

[] CaPTION 1 Congole hag tithe bar

[] CLOSE_BOx a Console has close button

D SHOW_HELF 1 Help meszages display

] MINIMIZE_EDx a Console has iconic buttan

[] WINDOW_TITLE “findaw title

[] COLOR_HELPRA... | 212,208,200 Help background color

|:| COLOR_BALCK 212,208,200 Backgraund colar -
< B
Puntear loz elementos que deben quedar accesibles para el parametraje del objeto. Los otros pardmetros
=& fijarén de manera idéntica a la configuracion corente del objeto.

Anular
2]

Selection of modifiable parameters for users of your models

You can select the list of parameters which remain accessible to the user
on the assistant. By clicking on « Save », you save your object model.
The storage directory for object models is « <AUTOSIM installation
directory>\i2d\lib ». You can use a sub-directory called « my objects » for
saving your models.

autoSIMP 32 ©Copyright 2011 SMC

O

Sl v IC : User manual

Importing an IRIS 2D object in an earlier version of AUTOSIM

With the right side of the mouse click on the « IRIS» element on the
browser and select « Import IRIS 2D objects ». Select one or more
« .AOF » files.

Creating an IRIS 3D console
With the right side of the mouse click on the « IRIS » element on the

browser and select « Add an IRIS 3D console » (see the chapter on IRIS
3D for more information).

Resources

This project element is used for adding all types of files to a project. Files
which are added will become an integral part of the project and will be
saved along with the other elements. To refer to a pseudo directory
where the resources are, the key word « <RESDIR> » can be used in the
specific directory name in AUTOSIM. For example IRIS objects can refer
to bitmaps if they are included in the resources.

Adding a file to the resources

With the right side of the mouse click on the « Resources» element on
the browser and select « Add » from the menu.

Deleting a file from the resources

With the right side of the mouse click the resource file on the browser
and select « Delete ».

Renaming a file in the resources

With the right side of the mouse click the resource file on the browser
and select « Rename ».

Modifying a file in the resources

With the right side of the mouse click the resource file on the browser
and select « Modify ».

Adding and converting 3D STUDIO files in the resources

3D STUDIO files can be converted into .x files and added to the
resources by clicking with the right side of the mouse on the
« Resources » element on the browser and selecting « Import 3D files »
(see the chapter IRIS 2D references and IRIS 3D references for more
information).

autoSIMP 33 ©Copyright 2011 SMC

ZSNC

User manual

External modules

These elements are reserved for executable modules developed by third
parties and interfaced with AUTOSIM.

The browser is used to display and manage all the project elements. By

double clicking on the elements or by clicking with the right side of the
mouse, you access the different functions applicable to each element.

autoSIMP 34 ©Copyright 2011 SMC

O

SI V IC User manual

Designing programs
Various tools are available for designing programs.

Designing with the assistant

This is without doubt the simplest when starting with AUTOSIM. With the
right side of the mouse click on an open sheet in the work space and
select « Assistant » from the menu. You will then be guided for making
selections. When you have finished click on « OK » and put the design
on the sheet by clicking with the left side of the mouse.

Grafcet | Ladder | Flow chart | Function blocks |
' i v Initial step v Loop v action rectangles Ez Steps
" divergence in Or :
EE branches IED first
" divergence in énd
Em interyal
D —
Mo |10 H
0k I Annuler

The assistant

autoSIM® 35 ©Copyright 2011 SMC

N
2

User manual

Designing with the shortcut menu

Click with the right side of the mouse on an open sheet in the work
space, the menu will propose a series of elements that you can put on
the sheet. This is an instinctive and fast creation method.

Designing with the pallet

By selecting elements on the pallet you can quickly create programs
starting from previously created elements.

Enhancing and customizing the pallet

« .GR7 » files are used to set the pallet, they are located in the directory
« <AUTOSIM installation directory>\pal ». You can delete, modify,
rename or add files. To generate « .GR7 », files use the « Export »
command by clicking with the right side of the mouse on a sheet on the
browser. The names displayed on the pallet are « .GR7 » files. Relaunch
AUTOSIM for a new element to be displayed on the pallet.

Designing with the keyboard keys

Each key is associated to design blocks. The « Blocks » element also
provides access to the blocks. The table below lists the blocks and their
use.

Delete block

Associated key | Generic name Comments Languages

Delete Used to make a cell blank All
again
Link blocks
Aspect | Associated key Generic name
| [E] Vertical link Link from top to bottom All
or bottom to top
_— [F] Horizontal link Link from right to left or All
left to right

autoSIM® 36 ©Copyright 2011 SMC

’-
"@SVC User manual

— [G] Upper left corner Link towards the bottom All
right or bottom left
— [H] Upper right corner | Link towards the bottom All
left or bottom right
L (1] Lower left corner Link from top to right or All
left to top
| [J] Lower right corner Link from top to left or All
right to top
— |— [Z] Cross Crosses two links All

Grafcet blocks

Aspect | Associated key Generic name Comments Languages

[:| [B] Step Normal step Grafcet

@ [C] Initial sFep yvithout Initial sFep yvithout Grafcet
activation activation

|:|:|:| [D] Initial step Initial step Grafcet

E Macro-step Only available in the Grafcet

shortcut menu

[+] Encapsulating step An encapsulation must Grafcet
. be linked
@ [-] Initial encapsulating step | An encapsulation must Grafcet
. be linked
X Initial state mark Défine intial state for an Grafcet
encapsulation
~|~ [T] Transition Transition Grafcet
T [$] Source transition Can replace the Grafcet
transition symbol
1 [£] Exit transition Can replace the Grafcet

transition symbol

autoSIMP 37 ©Copyright 2011 SMC

Z
‘-/i SVC User manual
Link for action on Use the following Grafcet
transition crossing | element to design the
action rectangle
Start of an action Use the [X] and [Y] Grafcet
— rectangle on transition | elements to end the
crossing rectangle
- K] Left limit of an « And » | Compulsory to the left Grafcet
divergence of an « And »
divergences
—T— [L] Supplementary branch | Do not use as a left or Grafcet
of an « And » right limit of an « And »
divergence or an divergence
« And » convergence
T [M] Right limit of an Compulsory to the right Grafcet
« And » divergence of an « And »
divergence
_— [N] Extension of an « And » | If placed in the [K], [L], Grafcet
divergence [M], [P] or [OL,[P],[Q],
[L] blocks
L [O] Left limit of an « And » | Compulsory to the left Grafcet
convergence of an « And »
convergence
L [P] Supplementary branch | Do not use as a left or Grafcet
of an « And » right limit of an « And »
convergence or an convergence
« And » divergence
—L [Q] Right limit of an Compulsory to the right Grafcet
« And » convergence of an « And »
convergence
- [R] « Or » divergence Do not use as a limit of Grafcet
an « Or » convergence
—T— [S] « Or » convergence Do not use as a limit of Grafcet
an « Or » divergence
—{ [U] Skip or repeat left step | « Or » convergence or Grafcet
divergence

autoSIM®

38

©Copyright 2011 SMC

P
-‘-//;SVC User manual

}— [V] Skip or repeat right step | « Or » convergence or Grafcet
divergence
T [SPACE] on an | Link towards the top For relooping and Grafcet
[E] block repeating steps

Flowcart blocks

Aspect | Associated Generic name Comments Languages

+— [0] (zero) Flowchart assignment | Separates the « test » Flowchart
from the « action »

area

{ o [1] « Not » function Complements the Flowchart
block input signal

1& t [2] « And » function Combines the inputs in Flowchart

an « And » logic

=1 [3] « Or » function Combines the inputs in Flowchart
an « Or » logic

[4] Block environment | Enlarges an « And » or Flowchart
« Or » function block

R

4 [5] Bottom of block Ends an « And » or Flowchart
« Or » function block

Ladder blocks
Start left coil Starts an action Ladder
— D] Start right coil Ends an action Ladder
—{ [U] Left limit Ends the diagram Ladder
}— [V] Right limit Starts the diagram Ladder
B — [R] Connection « Or » function Ladder
T [S] Connection « Or » function Ladder

autoSIMP 39 ©Copyright 2011 SMC

% SNC

User manual

Action blocks

Aspect | Associated

Generic name

Comments

Languages

environment

] [W] Action rectangle left Starts an action Grafcet and Flowchart
limit
[X] Action rectangle Extends an action Grafcet and Flowchart

[Y]

Action rectangle
right limit

Ends an action

Grafcet and Flowchart

action rectangle

action rectangle

Left side of a Starts a double action | Grafcet and Flowchart
double action rectangle
rectangle
[/] Middle of a double | Prolongs a double | Grafcet and Flowchart

[%] Right side of a Ends a double action | Grafcet and Flowchart
double action rectangle
rectangle
T [S] Divergence Action Used to vertically | Grafcet and Flowchart
juxtapose action
rectangles
}— [V] Divergence Action Used to vertically | Grafcet and Flowchart
juxtapose action
rectangles
A [#] Action on Defines the type of Grafcet
activation action
v [] Action on Defines the type of Grafcet
deactivation action
1 [@] Event-driven | Defines the type of Grafcet
action action

autoSIM®

40

©Copyright 2011 SMC

Sl V IC : User manual

O

Test blocks
Associated Generic name Comments Languages
key
— [7] Left limit of a test Starts a test Flowchart and ladder
— [6] Right limit of a test Ends a test Flowchart and ladder

Organization chart blocks

Associated Generic name Comments Languages
key
l <] Organization chart | Indicates the inputina| Organization
input rectangle chart
% [=] « False » output Output if a test Organization
rectangle is false chart

Function block blocks

Aspect | Associated Generic name Comments Languages
key

’F [8] Upper left corner of a | Starts the name of the | Function block
function block function block

"H [9] Upper right corner of a| Ends the name of the | Function block
function block function block

l [:] Lower left corner of a | Adds an input to the Function block
function block function block

" [;] Left limit of a function | Adds an input to the Function block
block function block

" [>] Right limit of a Adds an output to the | Function block
function block function block

} [?] Lower right corner of a| Adds an output to the | Function block
function block function block

autoSIMP 41 ©Copyright 2011 SMC

P
"-//;SVC User manual

Other blocks

Aspect | Associated Generic name Comments Languages
key
Combination / This block is a link Grafcet /
transition link between the Logical Flowchart /
Diagrams or Ladder Ladder

languages and the
Grafcet language

Documenting program elements

To document program elements, click below with the left side of the
mouse. To create comments, click on a blank space on the sheet. To
validate modifications, push the [Enter] key or click outside the editing
are with the left side of the mouse. To delete modifications, push the
[Esc] key or click outside the editing area with the right side of the
mouse.

When editing tests and actions, a « ... » button appears under the editing
area. If you click on it you access an assistant for creating tests or
actions.

$10)
---"ixq IEC W ariables
- 'y AUTOMGEN variables
cesbe Symbols
[@#-+-1) Operatars
Double click an the elements or drag them into the editing area. T— |
2]

Test creation assistant

autoSIMP 42 ©Copyright 2011 SMC

O

SMC

User manual

Adding symbols

To create a symbol, click with the right side of the mouse on the symbol
table in the work space and select « Add ». Or click the ® button on the
toolbar. You can also launch program compiling containing unset

symbols. You will be asked for variables corresponding to the symbols
during the compilation.

Symbol properties

M ame

Azsociated vaniable

Azzociated comments

The name can contain any character with the exception of *_". ak
& long iz restricted to 512 characters. & wariable name must

comply with [EC-1131-3 or AUTOMGEM spntax. Cancel

dils

Attribution of symbols during compilation

To easily design a program, create a new sheet, then click with the right
side of the mouse on the bottom of the sheet. Select « Assistant » from
the menu, you will then be guided by it.

autoSIM® 43 ©Copyright 2011 SMC

SMC

O

User manual

Running an application

To run an application easily

The *7 button on the toolbar is the quickest way to see application run
results. This pushbutton activates the following mechanisms:

- compilation of the application if it is not updated (not already

compiled after the last modifications),

- installation of the run module (with downloading if the current target
is a processor and following the connection options),

- passage of the target to RUN,
- activation of the dynamic display.

To end the run

Click on . On the processor target, the program continues to be run

on the target. On the PC, the program is stopped.

To compile only
Click on & |

To stop the compilation
Click on # .

To connect to a processor or install a PC
Click on

To disconnect a processor or uninstall a PC
Click on # .

To put the target in RUN mode
Click on

To put the target in STOP mode
Clickon ® .

To initialize the target
Click on

autoSIMP 44

©Copyright 2011 SMC

% SNC

To run a program cycle on the target (generally not supported on
processors)

Clickon & .

User manual

To activate the dynamic display
Click on = |

To run an application, click on the « GO » button. To end the run, click
again on the same button.

autoSIMP 45 ©Copyright 2011 SMC

O

SMC

User manual

The compiler

The compiler translates the sheets into a set of pivot language equations
(these can be displayed by double clicking on the « Generated code /
pivot language » element on the browser).

The pivot language is then translated into a language which can be run
by a post-processor (the current post-processor can be displayed and
selected by double clicking on the « Targets » panel accessible by
clicking on the « Targets » tab at the lower part of the window where the
browser is.

Modifying compiler options
Double click on the element « Configuration / Compiler options».

Displaying compilation messages

The « Compilation » panel on the messages window contains the counts
produced by the last compilation.

Finding an error
By double clicking on error messages, you can find the source.

% AUTOSIM ¥3.03 - Iris2D.agn E]@@
@ archivo Edicion ¥isualizacisn Programa Herramientas Yentana 2 1= X
BoE & &% o B
Provecta 4
= n Frovecto : Iiz2D. agn = e
-1-gf* Falios =
o MaIN
- Oé;mbolos “ZIH{_Resultado_FD:}

+- 58 Configuracion
+-[43 Documentacion
+- archivos generados

Puesta a punto
=@ lis T f=1 =
=@y Escritoria

& Valor digital

@ Botén viser ‘ 10 H{iResultadoi:=7Resultad07+0.l:} 20

@ Botdn visor

@ Archivacidn de datos T

@ Botdn visor

@ Botdn visor 3

@ Botdn visor =

@ Obisto &7 &8 %

or| & Blancos | G Palets g MaNGR? [& Simbolos

X ||AUTOSIM compiler wersion 2.014
Folder: MAIN
(folderh Al x=1r=820: error : 0020 : unknown ([ERR]=1 varia perat

own ble or operatar
1o ||ENd of compilation with errars. »
] J
o

2 INTERNATIONAL TRAINING 1 :
£ ;‘Infos)\'Compilacién APuesta a punto lf

—T— FPARD =

N

MAJ [NUM a9 SMCES 231350 |

An error message and its source

autoSIM® 46 ©Copyright 2011 SMC

SMC

If the message windows are hidden and if one or more errors are
detected by the compiler, a dialogue box indicates the first error detected
(to display the message windows: use the « Messages » command from
the « Windows » menu).

O

User manual

At the end of the compilation the « Compilation » window provides a list
of any errors. By double clicking on the error messages, the site in the
program that caused the error is displayed.

autoSIMP 47 ©Copyright 2011 SMC

O

SVC’ User manual
Running programs on a PC

The « run PC» target is an actual processor loaded in your PC.

You can:
- test your applications,
- drive a virtual operating part created with IRIS 2D or 3D,
- drive input/output cards connected to the PC.

Configuring the number of variables

Double click on the « Configuration / Post-processors / Executor PC /
Variables » element.

Mamero de wariables para la ejecucion

Eesen_-'ar autn:nj'!étin::amente el n_ume_n:n Ertciee —

[v ide varables wilizadas en la aplicacidn —
{[recomendada]

Salidaz : =i

Defina aqui el nimero de variables declaradaz T emparizaciones ; |

para la ejecucion. La opcion a activar "Reservar i

automaticamente .."* hace que el compilador : =1

azigne dnicamente el nimera de vanables Contadores : —_

utiizadaz [en funcian del namera mas elevada).
Palabras de 16 bits : =

Falabraz de 32 bitg : =
Palabraz reales : =

Anuilar | ok |

Selecting the number of variables

The space needed for the variables used in the application is
automatically reserved by default. You can manually select the amount
of memory to reserve for each type of variable. This may be necessary if
an indexed addressing is used to access a variable table.

autoSIM® 48 ©Copyright 2011 SMC

O

SMC

PC system variables

Bits 0 to 99 and words 0 to 199 are system variables and can not be
used as user variables in your applications. The two tables below provide

details on the PC system variables.

Bits | Use

0 active at first cycle, activation of initial Grafcet steps

1to 4 |reserved for I/O drivers

5to 7 |reserved for I/O driver errors

8 error on watchdog overflow is equal to 1

9 and |error general PC fault

10

11 run mode 1=RUN, 0=STOP

12 emergency stop pass to 1 in the event of an error or set to 1 to stop the program

13 to |reserved for drivers

29

30 bit associated to timer 1

31 bit associated to timer 2

32 bit associated to timer 3

33 bit associated to timer 4

34 bit associated to timer 5

35 bit for repeating sector (pass to 1 on repeat sector, reset to zero is the job of the
programmer)

36 setting this bit to 1 causes reading of the clock in real time and transfer to System
words 4, 5, 6,7, 8, 51 and 52.

37 setting this bit to 1 causes writing of System words 4, 5, 6, 7, 8, 51 and 52 in the
real time clock.

38 to |[reserved

55

56 division by zero

57 to |reserved for future versions

67

68 to |reserved for the stack of boolean processing

99

Words | Use

0 reserved for the upper part of the multiplication result or the remainder of the
division

1to 3 |timers in milliseconds

4 timer in 1/10 second

5 timer in seconds

6 timer in minutes

7 timer in hours

8 timer in days

9 to 29 | reserved for I/O drivers

30 timer 1 counter

autoSIM® 49 ©Copyright 2011 SMC

User manual

P
@SVC User manual

31 timer 2 counter

32 timer 3 counter

33 timer 4 counter

34 timer 5 counter

35 timer 1 procedure

36 timer 2 procedure

37 timer 3 procedure

38 timer 4 procedure

39 timer 5 procedure

40 lower part of clock reference
41 upper part of clock reference
42 to |reserved for I/O drivers

50

51 timer in months

52 timer in years

Modifying the run period

Double click on « Post-processors / Executor PC / Run ».

Parametraje de la ejecucion en PC

Tipo de ejecucian

v Ejecucidn perddica

Periodo en milizegundoz
a0

YWatchdog

1000
Autamlab

Time zcale (0= real time, 10=time » 10, etc.]
|n

E Anuilar

Setting the run period

autoSIMP 50 ©Copyright 2011 SMC

ZSNC

User manual

Driving inputs/outputs

Double click on « Configuration / Post-processor / Executor PC / I/O
Drivers ».

Controladores de entradas / salidas para la ejecucion PC

Controlador(es] wtilizadols) por el ejecutar PC Controlador(es] disponibles

advantechusbd7E1
opcdry
plosimdre

T

Loz controladores de entradas / salidas permiten pilotear uno o varios sistemas de entradas / zalidas conectados
al PC. EI PC ze comporta como autdmata v permite pilotear laz entradas p zalidas a partir del ejecutor PC. Arilar | Ok

Adding an I/O driver
Select a driver from the list on the right and then click on « Add ».
« Set parameters » is used to configure certain drivers.

The executor PC transforms your PC into a program processor, it can be
used to drive inputs/outputs directly connected to your computer.

autoSIMP 51 ©Copyright 2011 SMC

O

SVC‘ User manual
IRIS 2D references

IRIS 2D objects are used to create supervision and simulation
applications of 2D operating parts.

The link between the objects and the automatically functioning
applications is always created by interchanging the variable state.

IRIS 2D objects are contained in WINDOWS windows.

+ WX

An IRIS 2D object

IRIS 2D objects have two possible states: the « Configuration » mode
(used to modify the object characteristics) and « Use » mode (for using
an object). The « User » mode is also called « Employ » mode.

Modifying object displa

The objects can be hidden or displayed. This property can be specified
when opening an object or when changing the state of the dynamic
display in the environment. Only higher level objects (not objects located
on a console) can be displayed or hidden. Objects located on a console
are displayed or hidden at the same time as the console.

To dynamically modify the visibility of objects, click with the left side of
the mouse on the objects on the browser and select « Display/Hide ».

To modify the display properties, click with the left side of the mouse on
the objects on the browser and select « Properties ».

autoSIMP 52 ©Copyright 2011 SMC

N
2

User manual

Propiedades del ohjeto IRIS 2D

Yizibilidad
i+ Mizible al lanzarmientc
" Mo vizible al lanzamiento
" Wizible en visualizacion dindmica solamente
" izible fuera de visualizacidn dindmica solamente

Inicializacion

[Reinicializar al pazar a visualizacidn dinamica

@ (traz propiedades del objeta .. Anwlar | ok |

Display properties of an object.

Modifying object characteristics

Removing an object

Method 1: click the % button on the surface of the object.
Method 2: with the right side of the mouse click on the object on the
browser and select « Delete » from the menu.

Dimensioning an object

By dragging the object from one of its edges you can enlarge or shrink it
(you can also precisely modify the size of an object by accessing its
properties, see below).

Moving an object

Drag the object by clicking with the left side of the mouse on the minibar
located on the upper part of its surface.

Putting an object in « User » mode

Method 1: click on the button B on the object with the left side of the
mouse.
Method 2: click with the right side of the mouse on the object.

Putting an object in « Configuration » mode
Click with the right side of the mouse on the object.

Modifying the characteristics of an object

Method 1: click on the *! button.
Method 2: push down the [CTRL] key on the keyboard and click with the
right side of the mouse on the object, then release the [CTRL] key.

autoSIM® 53 ©Copyright 2011 SMC

P
"@SVC User manual

Method 3: with the right side of the mouse click on the object on the
browser and select « Properties » from the menu.

Block access to configuration for all objects

With the right side of the mouse click on « Project » on the browser,
select « Properties » and check « Block IRIS 2D object configuration »
on the « Advanced » tab.

Basic objects, preset objects

The basic objects set major functionality types. Preset objects are based
on a basic type and a configuration to meet a specific need. For an
example, an emergency pushbutton is an object derived from a basic
object used to create pushbuttons and lights. To access preset objects,
use the assistant by clicking with the right side of the mouse on the
« [RIS » element on the browser and select « Adding an IRIS 2D
object ».

List of basic objects

« Gonsole » object

The console object is the only object which can contain other objects on
its surface. It is used to create command consoles and animation
surfaces for virtual operating parts. This object has a pushbutton - used
to manage objects on its surface: add, move, delete etc.

The « Button and light » object

This is used to create pushbuttons and lights that interact with the
processing application variables.

The« Object » object
This is a polymorphic element primarily used to simulate operating parts.

The « Digital value » object

This is used to display numeric values of the processing application in a
number format.

The « Screen, keyboard, message list » object

This is used to display information on the processing application in a text
format.

autoSIM® 54 ©Copyright 2011 SMC

r
"-//;SVC User manual

The « Sound » object

This is used to produce output sounds when the variable state of the
processing application changes.

The « Data archive » object

This is used to display processing application data in a table or chart
format and save them in the computer memory or on the disk.

The « Program » object

This is used for processing run separately from the processing
application.

The « Dialogue box » object

This is used to display messages in a pop-up window format regarding
changes in the variable state of the processing application.

The « Analog value » object

This is used to display processing application numeric variables in an
analog numeric format (bars, dials etc.).

Practical experience

In this chapter you will be able to quickly create your first IRIS 2D
application. We are going to create a console, put a pushbutton on it and
link the object variables to the processing application.

Step 1

Creating a minimal application with AUTOSIM see chapter Designing
programs.

This is a Grafcet with one step as shown below.

Step 2

Launch the run of the AUTOSIM application (click on the « Go » button
on the toolbar).

autoSIMP 55 ©Copyright 2011 SMC

o
‘—‘//I-SVD User manual

Step 3

With the right side of the mouse click on the « IRIS » element on the
browser and then select « Add an IRIS 2D object » from the menu. In the
« Basic objects » category, double click on « Console ».

At this point the object will appear on the screen in this format:

-]
- o = B X

Step 4

To add a pushbutton to the console click on the console icon J (menu
access) and select the « Add an object » option. In the « Basic objects »
category, double click on « illuminated button ».

The object will then appear on the console:

- * W X

..

Step 5
Now we are going to associate the pushbutton to a processing

application output, for example %Q4. Click the pushbutton icon ﬂ (not
the console icon). The pushbutton properties dialogue box will open:

autoSIMP 56 ©Copyright 2011 SMC

O

Sl v IC : User manual

x|
Azpect] Linksz] thiu:uns]

— Type of object — Colars

& Push buttars Red | || Back unlt

" Light Green +f || € Back i

" Push button and light Bue < | »| € Characters
— Size of the object in pixels — Fant

"width Height =

[32 [52 _ Crange |
— Form

* Fectangle " Elipze b argin ; ||:|
— Texts

Text Drirection Help text Bubble text

ITe:-:t IEI deq I I

Yertical text position : i Centere © Top " Battam

Haorizontal test position ; i Centere © Taoleft Taoright

Previem
Cancel |
Text
tpply | ok |

Click the <« Links » tab (upper part of the dialogue window). In the
« Action when button is pressed » section enter « %Q4=1 ». In the
« Action when button is released » section enter « %Q4=0 ». Then click
on « OK » on the pushbutton on the lower part of the dialogue window.
Actions on the pushbutton will drive processing application output 4. You
can open a « Monitoring » window from the « Set-up » menu by clicking
with the right side of the mouse on the browser. You display the state of
output 4 when you click then release the pushbutton.

Step 6
We are going to associate a light to the « llluminated Button » object, this
light will be associated to a processing application input (for example 12).

Click the pushbutton icon = again. In the « Aspect » tab click on the
« Pushbutton and light » radio button. Click on the « Links » tab and
enter « %i2 » in the « Light state » section. Click on the « OK»
pushbutton in the lower part of the property dialogue window. You can
keep the state of variable « %i2 » modified (with a « Monitoring » window
or by modifying the state of the physical input, if it exists).

autoSIMP 57 ©Copyright 2011 SMC

o
‘—‘//I-SVD User manual

Step 7

We are going to duplicate the « llluminated Button » on the console in
order to obtain a second pushbutton whose properties we will modify.
Click on the pushbutton with the left side of the mouse while pressing
down the [SHIFT] key. Black squares will appear around the selected

object. Click on the console icon J and select the « Copy » option.

Click on the console icon ===| and select the « Paste » option. Now there
are two overlapping « llluminated Button» objects. Drag the upper one (it
is the only accessible one) by its upper bar and move it away from the
other pushbutton. The object which has been duplicated has the same
properties as the first. Now you can set the parameters for the second
object, for example, so it is linked to output 5 and input 3.

You can also customize the aspect of the pushbuttons by using the
aspect tab for the two objects. You can modify the size of the objects by
dragging their edges.

The three objects on the screen (console and two pushbuttons) are in
« Configuration » mode, this means that they have a mini bar on the
upper part of their surface, icons and edges for modifying their
dimensions. The objects have another mode called « Employ », in this
mode their aspect is permanent: the upper bar, icon and edges for
modifying the dimensions no longer exist. To tilt an object, click on it with
the right side of the mouse.

At this point you will have created an object that looks like this:

autoSIMP 58 ©Copyright 2011 SMC

O

SVC’ User manual
Creating an autonomous supervision application

To create an autonomous supervision application (without developing a
processing application with AUTOSIM) follow the procedure below:

- create correspondences for the AUTOSIM variables and the
processor variables by double clicking on the « Configuration /
Post-processor / <post-processor name> / Variable
correspondence » element (see the post-processor manual for
more information).

- compile the application by clicking on the % putton on the toolbar
(this validates the variable correspondence).

- configure the connection mode on « Only connect » by double
clicking on « Configuration / Post-processor / <post-processor
name> / Connection option ».

Comments:

- the « Automatic go » project option is used to obtain an application
which automatically connects to the target to be started.

- the « Generate an executable » on the « File » menu is used to
obtain an autonomous supervision application which is zipped and
not covered by copyright in the format of a single executable file.

Syntax for accessing the state of variables

You can use variable names in AUTOSIM , IEC 1131-3 or a symbol
syntax. The « ... » pushbuttons located near the drag areas in the object
are used to access the assistant for selecting a variable name.

Boolean state
This syntax is used in the object « states » section.

To test the state of a boolean variable, use the variable name, for
example: « i0 », « %Q0 », « gate open ».

To test the complement state of a boolean variable, add a character « / »
in front of the variable name, for example: « /i4 », « /%M100 », « /high
level ».

To test the equality of a numeric variable with a constant, use the name

of the numeric variable followed by « = », « < », « > » and a constant, for
example: « %MW200=4 », « speed>2 ».

autoSIM® 59 ©Copyright 2011 SMC

o
‘—‘//I-SVD User manual

The complement state is used for creating « if different », « if less than or
equal to» and «if greater than or equal to » tests, for example:
« [%9MW201<300 ».

The operator '&' is used to test a bit of a numeric variable, for example
M2008&4 tests the third bit (4 = 2 power 3) of word m200.

Numeric state
This syntax is used in the object « states » section.

To read the state of a numeric variable, use the variable name, for
example: « %MW300 », « m400 », « pressure », « _+V_ ».

Modifying the state
This syntax is used in the object « order » section.

To modify the variable state, add the « = » sign followed by a constant
after the variable name.

The following constants are used for boolean variables:
«0», «1» «F1» (set to 1), «F0» (reset), « UF » (end set), for
example: « %Q0=1 », « %I10=F1 », « %I12=UF ».

For numeric variables, the constant is a number, for example:
« M200=1234 », « speed=4 ».

Special orders

The following key words can be used in the object order sections:
« RUN »: puts the target in RUN mode,

« STOP »: puts the target in stop,

« INIT »: initializes the target,

« STEP »: effects a step on the target,

« GO »: identical to the environment GO command,

« ENDGO »: stops the GO command,

autoSIMP 60 ©Copyright 2011 SMC

O

SI V IC : User manual

« EXIT »: exits the environment,
« UCEXIT »: exits the environment without asking for confirmation,

« OPENAOF(<object>) »: displays an object. « <object> » designates an
object by its title and identifier number (configured in object properties)
with the « #identifier » syntax.

« GHAINAOF(<object>) »: displays an object and hides the current
object. « <object> » designates an object by its title and identifier number
(configured in object properties) with the « #identifier » syntax.

Interchanging objects

« PARENTPARAM(parameter {+n} {-n}) »

This is used for a sister object to access a parent console parameter.
The parameter must be set in the parent console « Links / Data for sister
objects » section. See the chapter « Console » object SISTERPARAM(
identifier , parameter)

When used for the OBJECT object, this syntax makes it possible to read
an object's value. See the « Object » object.

SETPARAM(identifier , parameter , value)

Used to modify the object parameter.

To access the list of parameters that can be modified, click with the right
side of the mouse on « llluminated Button» while editing the action areas
of an object, then select the « Parameters » command.

Details of a « Console » object

« Aspect » tab

Window

This is used to set the aspect of the console window: presence of edges,
a title bar (in this case a title can be given) presence of close and reduce
icons. If you check « Display help messages » you set-up a message
area at the bottom of the window, the size of this area is automatically
established based on the selected font (see below). If this area is not set,
messages from the sisters will be displayed on the parent console of the
console and on the bottom of the AUTOSIM environment window (if the
object does not have a parent).

autoSIMP 61 ©Copyright 2011 SMC

P
‘—‘//I-SVD User manual

Console background

This establishes the console background: color (see below), transparent
(accessible only if the console is the sister of another console), bitmap
(the background is set by a « .BMP » file, for example created with
PAINTBRUSH).

Colors

This is used to select the color for the console background (if a colored
background is selected - see above), the background and the characters
of the help message display area (if this area is valid - see above).

Fonts for the help area

This establishes the font used for displaying help messages at the
bottom of the console.

Object size

This establishes object dimensions in number of dots. These values can
be modified to precisely set the size of an object.

Texts
Help text and bubble text.

« Bitmap » tab

Bitmap

If the console background contains a bitmap (see « Aspect » tab) the
editing area must contain a complete access name to a « .BMP » file (16
color, 256 color and 24 bits formats are supported).

The « SCAN » and « EDITOR » pushbuttons are respectively used to
search for a « .BMP » file and edit a file with WINDOWS PAINTBRUSH
software.

« Links » tab

Data for sister objects

This editing area is used to set parameters that sister objects can access
with the key word « PARENTPARAM ». One setting per line must be
written. Each setting must comply with the following syntax:
« PARAMETER=VALUE ».

autoSIMP 62 ©Copyright 2011 SMC

r
"-//;SVC User manual

« Options » tab

Grid

This is used to set a grid (invisible) for positioning objects. Only the
« Move» command on the console integrated menu uses the grid. Grid
values are expressed in number of pixels. Values 0 and 1 cancel the grid
effect. This function must be used to perfectly align objects.

Resetting sisters

If you check « Continue to reset sisters ... » you establish that the sister
must continue to be updated when the console is changed to an icon.
This option is used, when it is not selected, to increase system
performance when a console changed to an icon only contains visual
elements.

« Sisters » tab

Sisters

This section contains the list of console sister objects. The « Properties »
pushbutton is used to directly open the properties dialogue box for the
sister selected from the list. The « Destroy » pushbutton eliminates the
selected object. The « Positions » editing areas are used to set object
positions.

« External » tab

Executable name
Name of an executable file operating on the console.

Parameters
Parameters provided on the command line for the executable.

Details of an « llluminated Button » object

« Aspect » tab

Object type

This is used to select the object type: pushbutton, light or pushbutton
integrated with a light.

autoSIMP 63 ©Copyright 2011 SMC

o
‘—‘//I-SVD User manual

Colors

This is used to select the object color. If the object is a pushbutton, the
« Background off » setting represents the color of the pushbutton. If the
object is a light or a pushbutton integrated with a light the « Background
on » setting establishes the color of the background when the light is on
and « Background off » when the light is off. If the object aspect is
established by a bitmap only the character color can be set.

Object size
This establishes object dimensions in number of dots. These values can

be modified to precisely set the size of an object. This is necessary if the
object aspect is established by a bitmap.

Font

This is used to select character font and size. The font file used must be
present on the PC where the program is run.

Text

This is used to specify the text displayed on the object, its position, its
print direction as well as the help text displayed when the button is
pressed and a bubble text which is displayed when the cursor is placed
on the object.

« Links » tab

Action when
This is used to set the actions to be effected when the button is pressed

and when it is released.

An action can be setting the state of a variable, for example:

00=1, m200=4, _depart cycle_=3

Or a preset key word

Configuration example where the input 10 reflects the pushbutton state
(i10 to O if the button is released, i10 to 1 if the button is pressed):

Action when the button is pressed: 110=1

Action when the button is released: 110=0

Light state

Establishes the light state. This section must contain the name of a
variable which drives the light: 0 = light off, 1 = light on.

For example:

P31, o4, _light init_, m200=50, m400<8, m500&16

autoSIMP 64 ©Copyright 2011 SMC

o
‘—‘//I-SVD User manual

Identifier
This is used to refer to an object in relation to the other objects.

Deactivation condition

This is used to deactivate the light. If this section contains a variable
name, then that variable deactivates the object if it is true.

« Options » tab

Type of pushbutton

This establishes if the pushbutton is bistable (it remains pressed)
monostable or a combination of the two: monostable with a simple click
and bistable with a double click.

Keyboard

This is used to associate a key to a pushbutton. If this key or
combination of keys is present on the keyboard then the pushbutton will
be pressed.

Different syntaxes can be used to set the key code:
e a simple character: For example A, Z, 2,

o the $ character followed by hexadecimal key code,
e the name of a function key, for example F5.

For combinations of keys CTRL+ or SHIFT+ must be added to the
beginning.
For example: CTRL+F4 or SHIFT+Z.

Bitmap
This is used to specify a bitmap which contains the design of an object.

The « Resize the image » option is used to extend the bitmap over the
entire surface of the object.

The bitmap file contains the four possible object aspects: button released
light off, button pressed light off, button released light on, button pressed
light on.

Even if the file is a pushbutton without a light or a light there are always

four aspects of which only two are used.
The bitmap file is divided horizontally in four.

autoSIMP 65 ©Copyright 2011 SMC

% SNC

Example:

User manual

The « Different aspect if the cursor is on the object... » option is used to
display a different image when the cursor passes over the object.

If this option is checked, the bitmap file contains 8 aspects, four
supplementary aspects are added to the right of the bitmap to contain
the design of the object when the cursor is on the object.

Example:

Sounds

If WAV files are selected, the object can produce sounds if the object is
pressed, released or if the cursor is on the object.

autoSIMP 66 ©Copyright 2011 SMC

’-
@SVC User manual

Details of a « Digital value » object

« Aspect » tab

Format

This is used to set the type of display:
e Always display the sign: display the '+' sign for positively signed
values,

e Signed value: sets the signed or unsigned mode for 16 or 32 bit
integers (only base 10),

e Display all digits: display the 0 at the beginning of the value if
necessary.

Base
e Establishes the display base for 16 and 32 bit integers.

Colors

This is used to select the background colors of the object (if it is not
transparent) and the characters.

Font

This is used to select character font and size. The font file used must be
present on the PC where the program is run.

Number of digits
Sets the length of the integer and decimal parts.

Background

This is used to select either a colored or transparent (if the object is only
placed on one console) background.

Object size

This establishes object dimensions in number of dots. These values can
be modified to precisely set the size of an object.

« Texts » tab

Bubble Text
Text displayed in a bubble when the user puts the cursor on the object.

autoSIM® 67 ©Copyright 2011 SMC

’-
"@SVC User manual

Text displayed before and after the value
This is used to display information to the left and right of a numeric value.

« Links » tab

Variable or symbol

This designates the variable to display. To access a time delay counter
or procedure the following syntax must be used:

e for the counter: COUNT (time delay), example: COUNT(t3),
o for the procedure: PRED(TIME DELAY), EXAMPLE: PRED(t7),

The Variable state can be modified

If this is checked then the user can modify the variable state by clicking
on the object.

Details of an « Analog value » object

« Aspect » tab

Objects
This is used to set the type of display.

Print direction
This establishes print direction: horizontal or vertical.

Colors

This is used to select the background colors of the object (if it is not
transparent) and the object.

Background

This is used to select either a colored or transparent (if the object is only
placed on one console) background.

Object size

This establishes object dimensions in number of dots. These values can
be modified to precisely set the size of an object.

Texts
Bubble text.

autoSIMP 68 ©Copyright 2011 SMC

o
‘—‘//I—-SVD User manual

« Links » tab

Variable or symbol
This designates the variable linked to an object (a word or a counter).

User action ...
This establishes if a variable can be modified by the user.

« Limits» tab

Minimum, maximum
Minimum and maximum values.

Start angle, end angle

To display the type of dial which establishes the start angle and end
angle. The values are expressed in degrees:

1507

270

B0"

« Graduations » tab

Using the graduations
This validates or invalidates the use of graduations

autoSIMP 69 ©Copyright 2011 SMC

r
"-//;SVC User manual

Start value, end value

Values displayed for the graduations, these values can be signed and/or
floating point numbers.

No small graduations, no large graduations

No graduations (two levels) related to start and end values. These values
can be floating point numbers.

Font
This establishes the characters used for the graduations.

Area N°1, area N°2 and area N°3

This is used to establish colored areas. « Start value » and « End value »
set each area. The color for each area is specified by three components
of red, green and blue between 0 and 255.

Colors

This establishes the character and graduation color. Again here the
colors are expressed by their three components: red, green and blue.

Details of « Screen, keyboard, message list » object

Links with the application

The link between the object and the application is made using word
tables.

To send data to a type of object (with or without the keyboard) the data
must be placed starting from the second word of the reception table plus
the length of the data in the first word in the table (maximum length is
255). Each word contains a datum.

The data can be: an ASCII character, a number of a preset message +
8000 hexa, or a special command: 100 hexa deletes the window, 200
hexa displays the date, 300 hexa displays the time, 400 displays the
message number.

When the object has reread the available data in a table it resets the first
word to 0 to indicate that the operation has been effected.

autoSIMP 70 ©Copyright 2011 SMC

o
‘—‘//I-SVD User manual

The principle is the same for « with keyboard » objects: the first word of
the transmission table contains the number of characters entered on the
keyboard, the following words contain the characters (one per word). The
application must reset the first word to 0 when it has used the data.

The interchange table for the « Message box, alarm list » object has a
fixed length of 10 words. As is true for the « Screen » type the first word
starts the message display. If it is different than 0 it designates a
message number to be displayed. Only registered messages can be
displayed. The first word can also take an ffff hexa value to clear the
message box.

Description of 10 words used for interchanges with the « Message box »:

Word 0 represents the first word on the table, Word 1 the second, etc.
Word 0: message number to be displayed if 0 is no messages or ffff hexa
to clear all messages,

Word 1: class number for the message (see chapter message classes
for a more detailed explanation).

The following words establish the date and time and can displayed for
each message. A value equal to ffff hexa asks the object to use the
current computer date and time (this does not include milliseconds).
Word 2: day

Word 3: month

Word 4: year

Word 5: hours

Word 6: minutes

Word 7: seconds

Word 8: milliseconds

Word 9: reserved (put 0)

Message classes

Message classes are used to classify messages into families which
share the following characteristics: background color, character color and
an icon.

there are two preset classes:

e the information message class: blue characters on a white

: ,
background, icon ®#, it bears the number -1,

autoSIMP 71 ©Copyright 2011 SMC

P
‘—‘//I-SVD User manual

e the alarm message class: white characters on a red background, icon
! 1 it bears the number -2.

Other classes can be set by the user.
A bubble text can be associated with the object.

« Aspect » tab
Object type

This is used to set an object type. See chapter links with the application

Colors

This is used to select the background colors of the object and the
characters.

Font
This is used to select the character font used for displaying texts.

Object size

This establishes object dimensions in number of dots. These values can
be modified to precisely set the size of an object.

Texts
Bubble text.
« Links » tab

Reception, transmission

This sets the first variables of the reception and transmission tables.
These areas can contain a variable name or symbol.

« List » tab
These sections do not regard « Message box » objects.

Icons
If this is checked an icon is displayed before the messages.

Classes
If this is checked a message class number is displayed

autoSIMP 72 ©Copyright 2011 SMC

P
‘—‘//I-SVD User manual

Days, Months, Years, Hours, Minutes, Seconds, 1/1000 seconds
If these are checked each one of these elements is displayed.

Messages
If this is checked a message is displayed.

Numbers
If this is checked a message display number is displayed.

Message classes

This editing area is used to establish new message classes. Each line
sets a class. The following must appear in order and be separated by
commas on each line: the background color three components red,
green and blue), the character color (three components red, green and
blue), the class name, the bitmap file name for the icon associated to the
class.

For example:

255,0,0,0,0,0,ALARM,alarm.bmp

Means:

Red background color, black character color, ALARM class name, file
containing icon: « alarm.bmp ».

« Options » tab

Displaying character hexadecimal codes

This option is used to display hexadecimal code for each character in
place of its ASCII representation. It is used for « Screen ... » type objects
and is normally used for starting up programs.

Horizontal, vertical scroll bar
Displays or hides scroll bars.

Converting OEM characters to ANSI

If this is checked, the characters from the processing application are
automatically converted from OEM characters (MS-DOS) to ANSI
characters (WINDOWS). The reverse conversion is applied to characters
which drive the object for the processing application.

autoSIMP 73 ©Copyright 2011 SMC

r
"-//;SVC User manual

Duplicating messages to ...

This section can receive a file or peripheral name (for example, « LPT1 »
for the printer) It is possible to specify multiple files and/or peripherals by
separating them with a comma. The displays will be automatically
duplicated: Printing « edge of the water ».

Associating a message storage file ...

This is used for setting a file which will be associated to the object and
used for storing information. If this file exists then the messages will be
saved (according to the number set in the « number of memorized lines»
section, when the number is reached the oldest data is deleted. When
the object is open, and if a storage file exists since its last use, then the
data contained in the file is transferred to the object.

Write the old message to ...

This is used to set a file or a peripheral which receives old messages
(the messages which are eliminated from the storage file to make room).

Number of memorized lines ...
This establishes the message storage file capacity in number of lines.

The value 0 attributes the maximum space that can be used (not a fixed
limit).
« Messages » tab

Preset messages
This editing box is used to document preset messages (one per line).

Details of « Data archive » object

« Aspect » tab

Objects

This is used to set the type of display.
The object can be represented in table format (figure 1.1) or graph
format (figure 1.2).

autoSIMP 74 ©Copyright 2011 SMC

O

S| V IC : User manual

—10

Date Heure dacouisition aleur M
2307196 16.52.52 443 -28043 o -3
2307196 16.52.53 541 -6059
2307196 16.52.54 540 16477 —
2307196 16.52.55735 -26575 - 4
2307196 16.52.56 837 -4091
2307196 16.52.57 935 18441 — 2
2307196 16.52.59.034 -24579 - 0
2307196 16.53.00.132 -2067

2] el 2]

(figure 1.1) (figure 1.2)
Colors

This is used to select the font color when the object is in a table format
as well as color for marking values on the graph.

Object size

This establishes object dimensions in number of dots. These values can
be modified to precisely set the size of an object.

Text
A bubble text associated with the object.

« Data » tab

First variable to read
This is used to select the first variable to be archived.

Number of variables to read

This indicates to the ARCHIVE object the consecutive number of
variables to the « First variable to read » that it must archive.

Number of memorized registrations

This is used to size memory database.
A regqistration represents an acquisition of « n » variables (« n » is the
number of variables to read).

Periodic reading

Variable acquisition will be done at fixed intervals of ARCHIVE object
running.

Start reading

Variable acquisition will be effected when the « Control word » has given
the order.

autoSIMP 75 ©Copyright 2011 SMC

o
‘—‘//I-SVD User manual

Period

This is used to establish the time between two acquisitions. The time is
in Day(s)/Hour(s)/Minute(s)/Second(s)/Millisecond(s) format:

J for days

H for hours

M for minutes

S for seconds

MS for milliseconds

E.g.:2J
E.g.: 2H10M15S

Control

This is used to set a variable (a word) that controls the ARCHIVE object.
From the value taken in the count, its contents is reset by the ARCHIVE
object.

Value Action

Nothing

Start an acquisition (Reading started)
Freeze the acquisitions

Restart archiving (after freezing)

Clear the memory database

Destroy the archive file

Activate « Save last acquisitions » mode
Cancel « Save last acquisitions » mode

Nooph~hwWN—-O

« Options » tab

Use the image file

The image file is used:

At the end of using the ARCHIVE object, to save the database present in
the memory.

When the ARCHIVE object is launched, to reconstruct the database
present in the memory during the last use.

Using the archive file
Each acquisition is saved in the file in standard database format.

Displaying

Acquisition date: This is used to display the acquisition date of a
registration.

autoSIMP 76 ©Copyright 2011 SMC

P
‘—‘//I-SVD User manual

Acquisition time: This is used to display the acquisition time of a
registration.

Hours, minutes, seconds, milliseconds: This is used to configure the
acquisition time display.

The time display is effected downstream from the display of acquisitions
for the TABLE object (figure 3.1) or under the grid when it is set for the
GRAPH obiject (figure 3.2)

Date Heure d'acquisition “aleur

24107196 13.42.43.112 314

24007796 13.42.44.211 287

2400796 13.42.45.309 -18451 /\l /\ /\

2400796 13.42.46.408 3489 / \ / \

24007796 13.42.47 506 25525

2400796 13.42.48.605 -17931 / \ \ / \

24007796 13.42.49.703 4035 'V‘ V)

2400796 13.42.50.802 26149

2400796 13.42.51.900 -17375 5% 5% 25 25 R

24007796 13.42.52.999 4709 = 59 = 59 =3
e & e e & e & e
el 23

(figure 3.1) (figure 3.2)

« Tables » tab

Font

This is used to select a font for displaying the column name, times and
acquisition value.

Column name

This is used to set the column name for the TABLE object as well as the
display format for these columns (figure 4.1)
syntax: name, format

format * Display

no format specified Signed, decimal, visible
h Hexadecimal

d Decimal

ns Not signed

S Signed

nv Not visible

v Visible

* The different options can be combined, for example:
Format Display

d,ns,v Decimal without sign visible

autoSIMP 77 ©Copyright 2011 SMC

S| V IC : User manual

Date Heure Champs1 hamp
24007796 14.21.55 3E8 [|
2407 /96 14.21.57 3E8 B5535
24007796 14.21.58 3E8 65535
24/07 96 14.21.59 3E38
24007796 14.22.00

O

Données § 0O

(figure 4.1)

« Graph» tab

Minimum, maximum value

This is used to select the minimum and maximum values for displaying
graphs.

Only values included between the minimum and maximum values will be
displayed on the screen.

Display

This is used to set the display time.

This is communicated to the ARCHIVE object in the
day(s)/Hour(s)/Minute(s)/Second(s)/Millisecond(s) format:
J for days

H for hours

M for minutes

S for seconds

MS for milliseconds

E.g.: Display 2H30M10S

E.g.: Display 100MS

Plotting values on the graph
This is used to make a mark on the graph for each acquisition (figure

5.1)

autoSIMP 78 ©Copyright 2011 SMC

P
-“//;SVC User manual

Displaying time

This is used to display the date and time of an acquisition of one or more
variables on the grid if it is open. Colors and fonts can be set for the time
display.

Outline colors

This is used to set a color for each graph. The first graph has the color of
the first line, the second graph has the color of the second line etc.
Colors are in Red, Green, Blue format.

E.g.: 255,0,0 red outline

If a color is not set on a line, the graph corresponding to this line will not
be outlined.

l\. . x one color for
" Y .
\, — / \ m AR each variable
n .-‘}l LY -'::' _)/& - My |~
N F Y oK
A P Yy ; . .
\ £ r ¥ /./
\/ J \\- one dot for each
| v value
w w0 [Fa iy o e Li=] o
g o g5 g2 g5 g8 g
24 g5 20 2 n 24 g
~ i) ™ 2 oo o ™ el
[«] | [2]

(figure 5.1)
« Graduations » tab

Using the graduations
This validates or invalidates the use of graduations (figure 6.1).

Start value, end value

Values displayed for the graduations, these values can be signed and/or
floating point numbers.

No small graduations, no large graduations

No graduations (two levels) related to start and end values. These values
can be floating point numbers.

Font
Establishes the characters used for the graduations.

Area N°1, area N°2 and area N°3

This is used to establish colored areas. "Start value" and "End value" set
each area. The color for each area is set by three components of red,
green and blue between 0 and 255.

autoSIMP 79 ©Copyright 2011 SMC

P
-‘-//;SVC User manual

Colors

This establishes the character and graduation color. Again here the
colors are expressed by their three components: red, green and blue.

—i0 end value
p B ° big step
L :" - f small step
z ; =3 — 0 start value
[| 1]
(figure 6.1)
« Grid » tab
Displaying the grid

This validates or invalidate grid display.

Not for ordinates
This sets the vertical pitch of the grid.

Not for abscissas

This sets the horizontal pitch of the grid. The pitch is in
Day(s)/Hour(s)/Minute(s)/Second(s)/Millisecond(s) format:

J for days

H for hours

M for minutes

S for seconds

MS for milliseconds

E.g.:1J

E.g.: 2H30M15S

Color

This is used to set a color for each grid.
The color is in Red, Green, Blue format
E.g.: 255,0,0 Red outline

autoSIMP 80 ©Copyright 2011 SMC

N
2

User manual

Details of « Object » object

« Aspect » tab

Type
This is used to set one of the object type aspecits:

e « n bitmap aspects »: the object aspect is provided by a bitmap file
which can contain various aspects, see the chapter « Bitmap » tab

e « n bitmap colors »: the object aspect is provided by a bitmap file, the
color is controlled by a processing application variable that replaces
the blank pixels of the bitmap. The other bitmap pixels must be black.
The processing application variable provides a color number, the
colors are set in the « Colors » tab.

e « gauge bitmap »: the object is a gauge with a format set by a bitmap.
The blank bitmap pixels set the format. The other pixels must be black.
The minimum, maximum and print direction are set in the « Gauge »
tab.

e « n format colors »: a rectangle, a rectangle with rounded edges or an
ellipse. The color is managed in the same manner as « n bitmap
colors ».

e « gauge formats »: the object is a rectangular gauge. The principle is
the same as for a « gauge bitmap »

Colors

This is used to select the character color for the text displayed on the
object.

Font
This establishes the font used for displaying text on the object.

Object size

This establishes object dimensions in number of dots. These values can
be modified to precisely set the size of an object.

Texts
Help text and bubble text.

autoSIMP 81 ©Copyright 2011 SMC

o
‘—‘//I-SVD User manual

The text displayed on the object: the position and print direction can be
modified.

« Links » tab

Clicked object, not clicked object

This sets the actions to be effected when the user clicks on the object
and when the user stops clicking the object.

An action can be setting the state of a variable, for example:
00=1, m200=4, _depart cycle_=3

Or a preset key word.

A configuration example where the input 10 reflects the clicked state of
an object (i10 to 0 if the object is not clicked, i10 to 1 if the object is
clicked):

Clicked object: 110=1

Not clicked object: 110=0

Permanently connect with ..

This area can receive the identifier of a sister object. If this object exists
then the position of the object is modeled on it. The identifier of an object
is an integer value between 1 and 32767. It is specified in the
« |dentifier» editing area of the « Links » section.

Aspect/Color/Filling

This area of the dialogue box contains 8 editing areas which can be used
to set different types of object behavior based on the processing
application variables.

No matter what their behavior they will always have a position which
depending on the type of object will design:

e an aspect contained on a bitmap for the « n bitmap aspects » type

e a color number for « n bitmap colors » or « n format colors »
e filling for the « gauge bitmap » or « gauge format » types.

The « Position » area can contain a numeric variable name (C or M). The
areas « + Position » and « - Position » can contain a name of boolean
variables.

autoSIMP 82 ©Copyright 2011 SMC

O

S| V IC : User manual

Two types of operation are possible:

e if the « + Position » and « - Position » areas are documented then the
boolean variables contained in them will drive the position: they add or
delete the value specified in the speed area. If the « Position » area is
documented then the current position is written in the variable which
contains the name.

e if the « + Position » and « - Position » areas are blank then the value
containing the variable where the name is written in the « Position »
area will be read as the object position.

The position can vary between the values set in the « Min » and « Max »
areas.

Sensors can be added (boolean variable names) which will be true for
the minimum and maximum position (position equal to minimum or
maximum).

Horizontal movement, vertical movement

These dialogue box areas each contain 8 editing areas respectively used
to set the horizontal and vertical position of the object. The principle is
identical to that described above.

« Formats » tab

Formats

For « n format colors » this section is used to select a rectangle, a
rectangle with rounded corners or an ellipse.

« Bitmap » tab

File name

For « n bitmap aspects, n bitmap colors and gauge bitmap » this editing
area must contain a complete access name to a « .BMP » file. These
files can be created with PAINTBRUSH or another graphics editing
program able to create « .BMP » files.

The « Scan » and « Edit » pushbuttons are respectively used to search
for « .BMP » files and to edit (launch of PAINTBRUSH) « .BMP » file if its
name is in the editing area.

Number of aspects

This editing area must contain the number of aspects (images) contained
in a « .BMP » file. This option is used for « n bitmap aspects ». The

autoSIMP 83 ©Copyright 2011 SMC

o
‘—‘//I-SVD User manual

different object aspects must be designed one under the other. The
highest aspect is the number O.

« Wmf » tab

File name

For « Meta files » this editing area must contain a complete access name
to a « .EMF » file.

Example of a « .BMP » file with 4 aspects:

Aspect ()

Aspect 1

Aapect 2

Aapect 3

The bitmap has transparent areas ...

This option is used to create an object with certain transparent areas (the
background of the parent console will be displayed). The transparent
areas are set by pixels of the same color, a color established by the
three components, red, green and blue. To set these components use
the three scroll bars. The color must be precisely set: exactly the same
proportion of red, green and blue as the color of the pixels in the
transparent areas.

« Colors » tab

Colors

This area is used for « n bitmap colors » and « n format colors » Each
line contains the setting for a color. The syntax used for each line is:

autoSIMP 84 ©Copyright 2011 SMC

o
‘—‘//I-SVD User manual

proportion of red (between 0 and 255), proportion of green (between 0
and 255) and proportion of blue (between 0 and 255). The first line
designates color number 0, the second line number 1, etc.

This area is used for « gauge bitmap » and « gauge format ». The first
line (color 0) and the second (color 1) establishes the two colors of the
gauge (active and inactive part).

« Gauge » tab

Gauge

This section is used for « gauge bitmap » and « gauge format ». The
« Minimum value » and « Maximum value » establish the limits for the
gauge drive variable.

Gauge print direction
This establishes one of the four possible directions for the gauge.

« Sensor» tab

The OBJECT object can be used as a sensor. The sensor is associated
with a boolean variable where the result is true if the sensor is in contact
with one or more of the preset colors (see below), otherwise it is false.

Detection position

This is used to set the side of the object which must be detected.
Detection is effected on the two edges of the selected side.

Example for detection from below:

Detected colors

A sensor is capable of detecting up to three different colors. If one of
these three colors is at the test points then the boolean variable
associated to the sensor (see chapter « Links » tab) is positioned at 1,
otherwise it is positioned at 0.

The three editing areas can contain a color setting in the format of three
values between 0 and 255 which respectively correspond to the

autoSIMP 85 ©Copyright 2011 SMC

P
‘—‘//I-SVD User manual

percentages of red, green and blue. The percentages of these three
colors must exactly correspond to the colors of the object to be detected
in order for the sensor to work.

« Options » tab

Key

Set a key used to simulate a click on an object.
Different syntaxes can be used to set the key code:
e a simple character: For example A, Z, 2,

e the $ character is followed by hexadecimal key code,
e the name of a function key, for example F5.

For combinations of keys « CTRL+ » or « SHIFT+ » must be added to
the beginning
For example: « CTRL+F4 » or « SHIFT+Z ».

The TAB key is used to access this object

If this is not checked then the TAB key cannot be used to activate the
object.

Advanced techniques

Dynamic object linking

This possibility is used to momentarily link one object to another. The « +
Position » and « - Position » parameters which manage the horizontal
and vertical position are used in a special way for linking one object to
another. These two parameters must contain the name of a numeric
variable (M). The « + Position » variable must contain the f000 value
(hexadecimal) and the « - Position » the identifier of the object to be
connected. The « + Position » variable is reset once the connection has
been made. To cancel the object connection the value 001
(hexadecimal) must be put in the « + Position » variable. See chapter:
Example of operating part simulation 1

Interchanging parameters between two objects

A object can access the parameters of a sister object by using the key
word « SISTERPARAM ».

The syntax is:

SISTERPARAM(identifier of the sister object, parameter)

« parameter » can assume the following values:

STATE object state: Aspect/Color/Filling value

autoSIMP 86 ©Copyright 2011 SMC

P
‘—@SVC User manual

STATE same as above but with negative value
POSX position on horizontal axis

POSX same as above but with negative value
POSY position on y axis

POSY same as above but with negative value
POSX+STATE position on horizontal axis plus state
POSX+STATE position on horizontal axis minus state
POSY+STATE position on vertical axis plus state
POSY+STATE position on vertical axis minus state

Details of « Sound » object

« Aspect » tab

Object size

This establishes object dimensions in number of dots. These values can
be modified to precisely set the size of an object.

« Sounds » tab

Name of sound files
Complete access name to « .WAV » files.

Associated variables
The boolean variable associated to each sound.

Details of « Dialogue box » object

« Aspect » tab

Type of box

This is used to select the various controls present in the dialogue box:
only one OK button, two buttons OK and CANCEL, or two buttons YES
and NO.

lcons

This is used to select the icon that will appear in the dialogue box. There
are four different icons, but it is possible not to display any of them. It is
also important to note that a special system is associated to each icon.
See the section on the BEEP option for more information on the subject.

autoSIM® 87 ©Copyright 2011 SMC

r
@SVC User manual

Object size

This establishes object dimensions in number of dots. These values can
be modified to precisely set the size of an object.

Beep

This is used to specify if the dialogue box display must be accompanied
by a sound warning.

Title
This is used to specify the title of the dialogue box.

Message type

There are two possibilities. A preset message is a message present in
the processing application user variables. The other possibility is to
specify a message list in this case the displayed message is a function of
the monitored variable state.

« Links » tab

Variable name

This specifies the name of the variable to monitor. Boolean or numeric
variables can be entered.

For example:
m200, i0

If the variable is boolean, then message no. 1 on the list will be displayed
when the state of that variable passes to 1.

For a numeric variable, if the « Message list » configuration option is
checked, then the dialogue box will be displayed when the value is
between 1 and the number of messages memorized on the list.

For example, if the list contains 8 messages, then it will not display
anything when the variable assumes negative values or those over 8. On
the other hand, when the value is between 1 - 8, then the appropriate
message is displayed.

If the « Preset message » option is activated, then the dialogue box will
display a message of the length contained in the variable, and situated in
the processing application variables based on that variable.

autoSIMP 88 ©Copyright 2011 SMC

r
"-//;SVC User manual

For example. if m200=4, this means that a message 4 characters long is
situated in the 4 variables following m200, or rather m201, m202. m203,
m204.

Dialogue box return code

With a boolean variable, no matter what action the user effects, it
contents will go to 0. For a numeric variable, there are different return
codes:

Press on an OK button: the variable assumes the value 8000 (hexa)
Press on an CANCEL button: the variable assumes the value 8001
(hexa)

Press on an YES button: the variable assumes the value 8002 (hexa)
Press on an NO button: the variable assumes the value 8003 (hexa)

Comment: Activation of a dialogue box is based on a rising edge, this
means passage from 0 to 1 for a boolean variable, and passage from a
value outside the message list range to a value included in it, for a
numeric variable.

Identifier
This is used to refer to an object in relation to the other objects.

« Messages » tab

Message list
Enter the different preset messages in this area.

Details of « Program » object

Run time distribution

IRIS objects are run by turns. The run time distribution is managed in a
straightforward manner by the object manager. two priority levels are
possible for « PROG » objects: if Priority run » is checked on the
« Program » tab, then the whole program is run while the object is
present. Otherwise, only one line is run before the object yields. There
are exceptions to this rule: access functions to the processing variables
(« READVAR » and « WRITEVAR ») may cause yielding, the YIELD

autoSIMP 89 ©Copyright 2011 SMC

P
‘—‘//I-SVD User manual

function sets a yield. In priority run mode, this function must be used
inside a loop in order not to block running of other objects.

Display
The object surface can be used for displaying information. The
« PRINT » function is used to display information.

Syntax

The character « ; » (semicolon) is used as a separator. Comments can
be written between the chains « (* » and « *) ». There is no difference
between upper and lower case letters for key words and function names,
on the other hand, for variable names there is a difference.

Stating variables

The variables used in a program must be stated before the program
between the key words « BEGINVAR; » and « ENDVAR,; ».
The following types of variables can be used:

INT 16 bit signed integer
UINT 16 bit unsigned integer
LONG 32 bit signed integer
ULONG 32 bit unsigned integer
STRING string of characters
FLOAT float

The general syntax of a statement is:

<type> <variable name>;

The general syntax for stating a variable table is:
<type> <variable name> [<length>];

For example:

BEGINVAR;

INT counter; (* a 16 bit signed integer *)
STRING string; (*a string*)

(*a table of 100 32 bit unsigned integers*)
ULONG table[100];
ENDVAR;

autoSIMP 90 ©Copyright 2011 SMC

O

Sl v IC : User manual

Writing a program
The program must be written between the two key words « BEGIN; »
and « END; »

Example:

BEGIN;
print "Good morning !";

END;

Constants

m 16 bit integer: a decimal number between -32768 and 32727 where
"S" follows a hexadecimal number between 0 and FFFF. Example: 12,
-4, $abcd

m 32 bit integer: a decimal number between -2147483648 and
214743648 where "L" or "S" follows a hexadecimal number between 0
and FFFFFFFF followed by "L". Example: 10000L, -200000L,
$12345678L

m string of characters: quotation mark characters followed by a string
followed by quotation mark characters. Controls characters can be
entered in a string. « \ n » replaces an LF character (ASCII code 10),
«\r» a CR character (ASCIl code 13). Example: "Abcdef", " (zero
string), "Follow\r\n"

- float: a decimal number followed by the character "R", the characters "."
are used to divide the integer part from the decimal part. Example: 3.14r,
-100.4r

Assignment
The string «:= » indicates an assignment.

Example:

counter:=4;

var :="ABCDEF";

autoSIMP 91 ©Copyright 2011 SMC

% SNC

User manual

Calculations

Calculation operators are evaluated from left to right. Parentheses can

be used to specify a calculation priority.

List of calculation operators:
® + addition (chaining for strings)

m - subtraction

m " multiplication

m / division

B << shift to the left

m >> shift to the right

m " raise by a power

m binary "and" AND

m binary "or" OR

m binary "exclusive or" XOR

Examples:

result:=varl* (var2+var3);

result:=result<<2;

Tests
Syntax:

IF <condition> THEN ... ENDIF;

or
IF <condition> THEN ... ELSE ... ENDIF;

Example:
IF (count<100) AND (count>10)

THEN

count :=count+1;
ELSE

count :=0;

ENDIF;

autoSIM® 92

©Copyright 2011 SMC

O

Sl v IC : User manual

Loops
Syntax:

WHILE <condition> DO ... ENDWHILE;

Example:

count :=0;

WHILE count<1000
DO
table[count] :=table[count+1];
count :=count+1;

ENDWHILE;

Variable or variable table address

The syntax &variable name or &variable table name provides the
address of a variable or variable table. This syntax is necessary for some
functions.

List of functions

For the proposed examples below, the following is supposed:

vint is an INT type variable, vlong is a LONG type variable, vuint is a
UINT type variable, vulong is a ULONG type variable, vfloat is a FLOAT
type variable, vstring is a STRING type variable.

PRINT

Display function. The data to be displayed is written after and separated
by commas. Example:

print "The result is:",vint/12,"\n";
NOT

Complement. This function can be used with the if test to complement a
result.

Example:

if not(1l<2) then ...

ABS

Absolute value.

Example:

print abs(0-4); (* display 4 *)

autoSIMP 93 ©Copyright 2011 SMC

O

Sl v IC : User manual

VAL

Provides the value of a string expressed in decimal number format.
Example:

vlong=val ("-123456"); (* vlong will contain -123456 *)

HVAL

Provides the value of a string expressed in hexadecimal number format.
Example:

vuint=hval ("abcd"); (* vuint will contain abcd hexa *)

ASC

Provides the ASCII code of the first character of a string.

Example:

vuint:=asc ("ABCD"); (* vuint will contain 65: ascii code of ‘A’ *)
CHR

Provides a string composed of one character where the ASCII code is
changed into a parameter.
Example:

vstring:=chr (65); (*vstring will contain string "A" *)

STRING

Provides a string composed of n characters. The first subject is the
number of characters, the second the character.

Example:

vstring:=string (100, " ™);

(* vstring will contain a string composed of 100 spaces *)

STR

Converts an integer numeric value into a string representing the value in
decimals.
Example:

vstring:=str (100); (* vstring will contain the string "100" *)

HEX

Converts an integer numeric value into a string representing the value in
hexadecimals.
Example:

vstring:=str (100); (* vstring will contain the string "64" *)

LEFT

Provides the left part of a string. The first subject is the string, the second
the number of characters to extract.
Example:

vstring:=left ("abcdef",2); (* vstring will contain"ab" *)

autoSIMP 94 ©Copyright 2011 SMC

P
-‘-//;SVC User manual

RIGHT

Provides the right part of a string. The first subject is the string, the
second the number of characters to extract.
Example:

vstring:=right ("abcdef",2); (* vstring will contain "ef" ¥*)

MID

Provides part of a string. The first subject is the string, the second the
position where the extraction begins, the third the number of characters
to extract.
Example:

vstring:=mid("abcdef",1,2); (* vstring will contain "bc" *)
LEN

Provides the length of a string.
Example:

vuint:=len("123"); (* vuint will contain 3 *)

COS

Provides the cosine of a real value expressed in radians.
Example:

vfloat:=cos(3.14r); (* vfloat will contain the cosine of 3.14 *)

SIN

Provides the sine of a real value expressed in radians.
Example:

viloat:=sin(3.14r); (* vfloat will contain the sine of 3.14 x*)
TAN

Provides the tangent of a real value expressed in radians.
Example:

vfloat:=tan(3.14r); (* vfloat will contain the tangent of 3.14 *)
ATN

Provides the tangent arc of a real value.
Example:

vfloat:=atn(0.5r); (* vifloat will contain the tangent arc of 0.5 *)
EXP

Provides the exponential of a real value.
Example:

vfloat:=exp(lr); (* vfloat will contain the exponential of 1 *)

LOG
Provides the logarithm of a real value.

autoSIMP 95 ©Copyright 2011 SMC

P
-“//;SVC User manual

Example:

vfloat:=log(lr); (* vfloat will contain the logarithm of 1 *)
LOG10

Provides the base 10 logarithm of a real value.

Example:

vfloat:=1o0gl0(1lr);
(* vfloat will contain the base 10 logarithm of 1 *)

SQRT

Provides the square root of a real value.
Example:

vfloat:=sqgrt(2); (* vloat will contain the square root of 2 *)
DATE

Provides a string representing the date.
Example:

print "The date is:",date(),"\n";
TIME

Provides a string representing the time.
Example:

print "The time is:",time(),"\n";
RND

Provides a random number.

Example:

print rnd();

OPEN

Opens a file. The first subject is the file name, the second the access
mode, which can be: «r+b » opening in reading and writing, « w+b »
opening in writing (if the file exists it is destroyed. The function provides a
long which identifies the file. If the opening fails, the value provided is 0.
Example:

vulong:=open ("new", "w+b") ;

CLOSE

Closes a file. The subject is the file identifier provided by the OPEN
function.
Example:

close(vulong) ;

autoSIMP 96 ©Copyright 2011 SMC

P
-“//I-SVD User manual

WRITE

Writes data in a file. The first subject is the file identifier provided by the
OPEN function. The second subject is a variable address, the third the
number of bytes to be written. The function provides the number of bytes
actually written.

Example:

vuint:=write(vulong, &buff,5);

READ

Reads data in a file. The first subject is the file identifier provided by the
OPEN function. The second subject is a variable address, the third the
number of bytes to be read. The function provides the number of bytes
actually read.

Example:

vuint:=read(vulong, &buff, 5);

SEEK

Moves a file pointer. The first subject is the file identifier provided by the
OPEN function, the second the position.

Example:
seek (vulong,01);

GOTO

Effects a jump to a label in the subject. The subject is a string.
Example:

goto "end"

end:;

CALL

Effects a jump to a subprogram. The subject is a string containing the
subprogram label.

Example:
BEGIN;

(* main program ¥*)

call "sp"

END;

BEGIN;

(* subprogram *)

sp:

print "In the subprogram\n";

return;

autoSIMP 97 ©Copyright 2011 SMC

P
-“//I-SVD User manual

RETURN
Indicates the end of a subprogram.

READVAR

Reads one or more variables of the processing application. The first
subject is the processing variable name (variable or symbol name). The
second subject is the variable or 32 bit (longs or floats) variable table
address The third subject is the number of variables to be read. If the
function is executed with no errors, the value of 0 is provided.

Example:

readvar ("i0", &buff,16); (* read 16 integers starting from i0 *)

WRITEVAR

Writes one or more variables of the processing application. The first
subject is the processing variable name (variable or symbol name). The
second subject is the variable or 32 bit (longs or floats) variable table
address. The third subject is the number of variables to be written. If the
function is executed with no errors, the value of 0 is provided.

Example:
writevar ("oO", &buff, 16);

(* write 16 outputs starting from o0 *)

CMD

Executes a command. The subject is a string which specifies the
command to be executed. This function makes it possible to use preset
IRIS commands. For more information see the chapter Special orders . If
the command is executed with no errors, the value of 0 is provided.
Example:

cmd ("run") ;

YIELD

Yields control. This function is used so as not to monopolize the
execution when the object is run in priority mode.

Example:
WHILE 1

DO

yield();
ENDWHILE;

autoSIMP 98 ©Copyright 2011 SMC

SMC

DLL

Calls up a DLL. The first subject is the DLL file name. The second is the
function name. The third is a pointer on a 32 bit variable which will
receive the function return code. The other subjects are passed to the

O

User manual

function.
Example:

dll "user", "messagebeep", &vulong,-1;

Error messages
« separator ;'

« syntax error »
« variable set more than once »

« not enough memory »

« variable not set »

« constant too big »

« program too complex »

« incompatible variable or constant
type »

«)’ missing »
« ENDIF missing »

« 'ENDWHILE’ missing »

« label cannot be found »

« ') missing »

autoSIM®

99

missing »a semicolon is missing
syntax error detected
a variable set more than once

the program run has saturated
the available memory

a variable used in the program
has not been set

a constant is too big

an expression is too complex,

it must be broken down

a variable or constant is not

the expected type

A closing parenthesis is missing

The key word ENDIF is missing

The key word ENDWHILE is
missing

a goto or subprogram label cannot
be found

the closing square bracket is

©Copyright 2011 SMC

O

SMC

User manual

« element number outside limit »

« too many overlapping ‘CALL’ »
«‘RETURN’ found without ‘CALL’ »
subprogram

« variable size too small »

« DLL file cannot be found »

« function cannot be found in DLL »

« division by zero»

« mathematical error »

« Aspect » tab

Colors

missing

a table element outside of the
limits has been used

too many overlapping subprograms
have been used

RETURN found outside a

the size of a variable is insufficient
the DLL file cannot be found

the function cannot be found in the
DLL file

a division by 0 has been
produced»

a mathematical function has
caused an error

This is used to select the object background and character color.

Object size

This establishes object dimensions in number of dots. These values can
be modified to precisely set the size of an object.

Text

This is used to specify a bubble text which is displayed when the cursor

is on the object.
« Program » tab

Program

This editing area contains the program.

autoSIM®

100

©Copyright 2011 SMC

P
-“//;SVC User manual

If this is checked than the program is run.

Priority run
If this is checked than the program is run more rapidly.

Run at start-up

If this is checked then the program is run when the object is opened. This
option is used to save an object with the « Run » option not checked by
requesting a run when the object is loaded.

Go to the error

If an error has been detected when a program is running, then the
pushbutton is used to place the cursor in the place that caused the error.

autoSIMP 101 ©Copyright 2011 SMC

O

Sl v IC : User manual

IRIS 2D examples

The examples file names refer to the « Examples » subdirectory of the
directory where AUTOSIM is installed.

Example of composed objects

This example is used to let you understand how to create a « Decimal
keyboard » object composed of keys. « 0 » to « 9 » plus a key [ENTER]
for validating.

You will create a « Console » object, then starting from the console
menu you will create an « llluminated Button » object. We are going to
set parameters for this object then we will duplicate it to obtain other
keys. Then we will adjust the duplicated key properties to customize
them: text display on the key and action We will then have a keyboard
with a uniform key aspect.

Link with the application will be effected by using a word.

When a key is pressed it will write its code (0 to 9 or 13 for the validation
key) in that word.

To specify that word we can give its name in the action section of the
properties for each object. The problem is that when we reuse the
« Decimal keyboard » object and if we want to use another word, it is
necessary to modify the properties of the 11 « llluminated button »
objects.

To get around this problem we are going to use the possibility that sister
objects have of accessing a parameter set in the properties of the parent
console. The « Links » tab of the console property window is used to set
the parameter. Only write on one line in the editing area.
« KEYBOARD=M200 ». This line means that the keyboard parameter is
equal to M200.

The keyboard keys refer to the « KEYBOARD » parameter and not
directly to word M200. To change the word used, just change the
parameter setting in the console properties.

Going back to the aspect of our keyboard...

autoSIMP 102 ©Copyright 2011 SMC

o
‘—‘//I—-SVD User manual

In order for the aspect of the keyboard to be satisfactory we are going to
set a grid to align the keys. In the console properties window and the
« Options » tab write the value « 10 » in the two « Grids » sections This
way the function moved from the console menu will use a 10 pixel grid.
We are also going to set the dimensions for the first key. We can directly
modify the dimensions of the key by dragging it by its edges, but for
greater precision we are going to modify the dimensions form the
« Object size in pixels » section of the « llluminated Button » object
window property tab.

For example, enter « 30 » for the width and height.

At this point you can also customize the style of the key. the color and
font used for marking etc.

We are going to place this first key to the upper left of the keyboard (this
is an arbitrary choice). The keyboard we are going to create will look like
the numberpad of a computer keyboard. We are then going to mark this
key with the text « 7 » in the « Text » section of the « Aspect » tab.

We are also going to set parameters for the functional aspect of the key:
in the « Action when the button is pressed » section of the « Links » tab
we are going to write: « PARENTPARAM(KEYBOARD)=7 ». This means
that when the pushbutton is pressed the word designated for the
« KEYBOARD » parameter of the parent console will receive the value 7.
Delete whatever is in the « Action when the pushbutton is released'»
section.

We can also assign a computer keyboard key to the « llluminated
Button » object. Then it will be possible to use the keyboard with the
mouse or computer keyboard. To assign a key to the « llluminated
Button », object use the « Key » section of the « Options » tab. For
example, enter « 7 » to associate computer keyboard key « 7 » to the
object.

autoSIMP 103 ©Copyright 2011 SMC

P
‘—‘//I-SVD User manual

Then place key « 7 » at the upper left of the keyboard, like this:

o] | B X

To move this key, select the object ((SHIFT) key pressed, then click with
the left side of the mouse on the object), then use the « Move » function
from the console menu. This function is the only one which uses the grid
instead of moving by dragging the bar of sister objects.

To create other keys, duplicate the existing key:
¢ select the first key,

e select « Copy » from the console menu, then « Paste »
e move the previously pasted key,

e set parameters for the new key: (text, links and computer keyboard
key).

When you have finished the above row (keys « 7 », « 8 » and « 9 ») you
can then select all three keys together and duplicate them.

You can create a validation key (wider for filling the surface of the
keyboard).

To finish, resize the console and put the objects in « Employ » mode.

autoSIMP 104 ©Copyright 2011 SMC

P
@SVC User manual

The final result should look like this:

Keyboard

| =] &~
o
=]

« Examples\IRIS2D\keyboard.agn »

Example of using the « Screen, keyboard, message list » object

as a message list

Instructions:

e the object must display four different messages based on the state
of four inputs (i0 to i3),

e forinput 0: an information message « Start cycle »,

e forinput 1: an information message « End cycle »,

e forinput 2: an error message « Error 1 »,

e forinput 3: an error message « Error 2 ».

e the messages must be displayed when the rising edge of the inputs

appears,

e a record of 50 messages will be kept in the object and saved on
the disk,

e the messages will be duplicated by a printer connected on
« LPT1: »,

e a pushbutton must be used to delete the messages.

autoSIMP 105 ©Copyright 2011 SMC

P
-‘-//I-_SVC User manual

Solution:

;:'. 0ooo1 12:14.12 7} 62002 Start
g3 00002 12:14.13 7 6/2002 End
8 00003 12:14.14 7 62002 Error 1

00004 12:14.14 7 62002 Error 2

00005 12:14.16 7/ 6/2002 End

@ 00006 12:14.17 7/ 6/2002 Error 1

Delete the messages

« Examples\IRIS2D\screen keyboard 1.agn »
Variation:

Pressing on the pushbutton « Delete the messages » causes the « Do
you want to delete messages » dialogue box to open with a choice of
YES or NO.

Solution:

« Examples\IRIS2D\Screen keyboard 2.agn »

Example of using the « SCREEN KEY » object as a terminal

Instructions:

Display a message « Enter a value », requires that a decimal value be
typed on the keyboard (two characters) then displays that value
multiplied by two after the « Result: » text.

Solution:

4
« Examples\IRIS2D\terminal 1.agn »

autoSIMP 106 ©Copyright 2011 SMC

P
@SVC User manual

Variation:
The displayed messages are stored in the object and no longer in the
processing application.

Solution:
« Examples\IRIS2D\terminal 2.agn »

Example of an application composed of multiple pages

This example will let you understand how to create an application
composed of multiple elements: in this case a menu is used to access
two different pages.

« Examples\IRIS2D\menu.agn »

Example of using the «OBJECT » object

Simulation of a jack.

Instructions:

e jack driven by two 00 outputs (extract the jack) and o1 (retract the
jack).

e two limit inputs i0 (jack retracted) and i1 (jack extracted.

Three objects will be used:
e a « Console » object acting as support,

e an « Object » for the jack body,
e an « Object » for the jack shaft.

autoSIMP 107 ©Copyright 2011 SMC

r
Z

SMC

Solution:

User manual

The jack body is an OBJECT object which remains static, only its aspect

is configured:
x|

Properties of DBJECT object - ¥4.01
Aspect] Link I Foims I Bitmap I WWF I Lolors T Guage I Sensor Igplinns]

Wertical position of text :
Horizontal position of text :

~Tep — Colour
" Bitmap n aspects = Faorm n colours Fed o] |
€ Bitmap ncolows ¢ Form gauge Green « | 5
 Bitmap gauge { Metafie Il
Blus 4| |
~ Size of the object in pixels [~ Character fant
‘wiidth Height
= = Change
i)
Text Orientation Help text Bubble text
I 0deg I I

% centere (atthetop O at the b
* centere © onthelefC ontheri

Sur

Cancel |
|

The jack shaft is an OBJECT object configured as follows:

x|

Properties of DBJECT object - ¥4.01

Aspect] Link I Foims I Bitmap I WWF I Lolors T Guage I Sensor Igplinns]
~Tep — Colour
" Bitmap naspects ¢ Form n colours Fed o] |
" Bitmap ncolows 1+ Farm gauge: Green « | |
 Bitmap gauge { Metafie - o
~ Size of the object in pixels [~ Character fant
‘wiidth Height
[ioo 10 Change
i)
Text Orientation Help text Bubble text
I Odeg I I
‘erical position of text : % centere (atthetop O at the b
Horizontal position of text - & centere ¢ aontheleft onther

Sur

.

Cancel |
soov_|

autoSIM®

108

©Copyright 2011 SMC

O

3 User manual

Properties of OBIECT object - x|

Aspect I Link I Foims T Bitmap I ‘ihdF I LColors T Guage T Sensor Igpliuns]

i~ Link:
Aclion Horizontal transfer [« axis)
Object clicked Objet not clicked Position +Position - Position Capt.min
[| [| I |
Link permanently with(identifier] Mini Maxi Speed ms Capl max
[o
Aspect / Colour / Filling Weitical transfer [y axis)
Position +Position - Position Capt.min Position +Position - Position Capt.min
| foo Jor fio | | | |
Mini Maxi Speed ms Capt. max Mini M axi Speed ms Capt max
P fe F rf b F
Identifier Sensor
o |

Properties of DBJECT object - ¥4.

Aspect I Link I Foims I Bitmap I WWF I Lolors I Guage I Sensor Igplinns]

0250 = |

00~ T T L R D

In the lines above the colours must be individualised by writing in
the order of the three componants red, green and blue separated by a comma.
these components are represented by a walue between 0 and 255

Properties of DBJECT object -

Aspect I Link I Foims I Bitmap I WWF I Lolors T Guage I Sensor Igplinms]

tinimum
ID
I aximuim

IWDU

Orientation of the guage:

= from the bottom towards the top
" from the top towards the bottom
1+ from the left towards the right

1~ from the right towards the left

_ e

autoSIMP 109 ©Copyright 2011 SMC

N
2

User manual

« Examples\Process Simulation\2D\tutorial1.agn »
Variation:

An intermediate position needs to be added on the jack. We are going to
use two supplementary objects for this: a piece attached to the jack shaft
which will activate a sensor and a sensor.

To connect the piece activating the sensor to the jack shaft, the jack
shaft needs to be associated to an identifier: in the « ldentifier » section
of the « Links » tab write « 100 ». To connect the piece to the shaft, in
the « Horizontal movement, Position» section of the « Links » tab write:
« SISTERPARAM(100,STATE) ». This connects the piece with the jack
shaft state.

The object used as a sensor is set with parameters as follows:

Properties of OBJECT object - ¥4.01 LI
Aspect I Link I Foims T Bitmap I ‘ihdF I LColors T Guage T Sensor Igpliuns]
i~ Link:
Aclion Horizontal transfer [« axis)
Object clicked Objet not clicked Position +Position - Position Capt.min
Link permanently with(identifier] Mini Maxi Speed ms Capl max
Jo Jo J200 5 r |
Aspect / Colour / Filling Weitical transfer [y axis)
Position +Position - Position Capt.min Position +Position - Position Capt.min
Mini Maxi Speed ms Capt. max Mini M axi Speed ms Capt max
Jo [200 5 | Jo 200 5 |
Identifier Sensor
Jo Ji2
Sur
ooy |

autoSIMP 110 ©Copyright 2011 SMC

S
2

User manual

Properties of OBJECT object - ¥4.01 x|

Aspect I Link T Foims T Bitmap I ‘ihdF I LColors T Guage T Sensor Igpliuns]

Paosition of the detection

* Bbove

 tothe left . " to the right

= below

The sensor detects the objects containing on of the three defined colours
Below. the colours are defined by three walues between 0 and
255 separated by commas and representing the components R, G, and B

(0.0.285 Or 1]

Sur

Apply | 0K |

The result is as follows:

« Examples\Process Simulation\2D\tutorial2.agn »

Second variation:

A vertical jack attached to the horizontal jack shaft is added. This jack is
activated by one output (O2=1 to extract the jack, O2=0 to retract it). Two
limits are associated to i3 and i4.

The result is as follows:

autoSIMP 111 ©Copyright 2011 SMC

S
2

User manual

« Examples\Process Simulation\2D\tutorial3.agn »

Two OBJECT objects are added: one for the body of the jack and one for
the shaft.

Example of using the «<ARCHIVE» object

Instructions:
e archive the state of 3 words of the processing application (m31 to
m33) every second.

e the state of 4 words will be displayed on a graph left on display for
10 seconds of acquisition.

e 1000 values will be memorized in the object.
e the acquisitions will be archived in a text format « data.txt » file.
Solution:

autoSIM® 112 ©Copyright 2011 SMC

S
2

User manual

%

L
=
L]

"
L
L

\
|

16.35.53)
i

16.35.52 \l
16.35.594

16.35 46 ‘
16.35.47 \
16.35.45 ‘v
16.35.49 \
16.35.50 \
16.35.51 l'

I; 16.35.45 \

L
=

« Examples\IRIS2D\archiving »

Example of using the «PROG » object

Instructions:

e pressing on a pushbutton must cause the inversion of the output
states OO0 to O99.

Solution:

« Examples\IRIS2D\program.agn »

Examples of supervision application 1

The following example illustrates the creation of a supervision
application. The supervision application displays the state of gates and
the level of tanks. The user's actions on the gates will invert the gate
state (open or closed). The RUN/STOP state of the application will also
be displayed and two pushbuttons will be used to go from RUN to STOP.

The result is as follows:

autoSIM® 113 ©Copyright 2011 SMC

S
2

User manual
Exemple supervision
-
-
-
-

BEURRRY s1or

« Examples\IRIS2D\supervision 1 »

OBJECT objects will be used to represent the gates. A bitmap file is
created to represent the gates: open state (green) and closed state (red):

Examples of supervision application 2

This example illustrates the use of a more evolved OBJECT object. The
application displays the state of a gate which can be:
e gate open (commanded opening and open gate sensor true):
green,

e gate closed (commanded close and closed gate sensor true): red,

e gate opening in progress (commanded opening and open gate
sensor false): blue,

e gate closing in progress (commanded closing and closed gate
sensor false): purple.

The user can invert the gate state by clicking on it.

The processing application manages the gate state.

autoSIMP 114 ©Copyright 2011 SMC

P
'—@%® User manual

Exemple d'application ... [l

« Examples\IRIS2D\supervision 2.agn »

Example of operating part simulation 1

Simulation of a manipulator arm

« Examples\Process Simulation\2D\manipulator arm.agn »

autoSIM® 115 ©Copyright 2011 SMC

O

SI u IC User manual

Example of operating part simulation 2

Simulation of an elevator

pliale

2|V

AL
Y

« Examples\Process Simulation\2D\elevator.agn »

IRIS 2D objects are used to create supervision and simulation
applications of 2D operating parts.

autoSIM® 116 ©Copyright 2011 SMC

O

SVD’ User manual
IRIS 3D references

IRIS 3D allows you to create simulation applications for 3D operational
units. The TOKAMAK engine is integrated to IRIS3D to enable a realistic
physical simulation: gravity, interactions between objects.

IRIS 3D is used to animate 3D objects using standard model makers: 3D
STUDIO, SOLIDWORKS, SOLIDCONCEPTER, etc ...

The native format of the files processed by IRIS 3D is « .X » files set by
Microsoft's DIRECTX 8.

A « .3DS » to « .X » converter is integrated into the environment.
The CROSSROADS program provided on the AUTOSIM installation CD-

ROM or downloaded from www.smctraining.com is used to convert a
significant number of 3D files to « .3DS » format.

IRIS 3D is in a window format enclosed in the IRIS 2D console. 3D
objects are animated on the console.

Each 3D file represents an object in IRIS 3D. The elements in an
operating part must have their own movement and must be represented
by separated files. For example, for a jack composed of a body and a
shaft, files must be created for the jack body and for the jack shaft.

To create animation of objects in a 3D world, one or more behaviors can
be applied to each of the objects. A behavior is composed of an object
modification (moving, changing color etc.) and a link with the processing
application variables to condition this modification. For example: extract
the jack shaft if the output for the processing application is true.

autoSIMP 117 ©Copyright 2011 SMC

SMC

O

User manual

Tutorial

The “examples\process simulation\3d\tutorial 2” sub-directory in the
AUTOSIM installation directory has a WORD file that contains a tutorial
devoted to creating 3D operational units.

The list of objects is shown in the list. The objects linked to an object are
shown as sub-elements if the “Tree structure display” checkbox is
checked.

Creating an IRIS 3D console

With the right side of the mouse click on the « Iris » element on the
browser and then select « Add an IRIS 3D console ».

Propiedades del ohjeto IRIS 3D

Posicidn del alumbrado = |E p= |.-| 2= |1

[v gestionar los objetos transparentes (s lento 5 e punteada)
v autorizar la configuracidn

rotacidn de la camara a =

~
’ Color del fondo
* rotacion de la camara a 'y

~

rotacidn de la camara a 2 I:I I

Wector de gravedad K= ||:| p= 119 z= [

Eztog pardmetroz determinan el modo utiizado en RIS 30, "aukarizar la configuracion'
debe estar punteado en modo concepcion [para afadi objetos a la escena v
parametrarloz]. El gje de rotacion influpe en la navegacion 30,

Anular | ok |

Creating an IRIS 3D console

autoSIM® 118 ©Copyright 2011 SMC

O

SMC

User manual

Adding 3D files to the project

With the right side of the mouse click on the « Resources» element on
the browser and select « Import one or more 3D files » from the menu.

Select one or more « .3DS » files. (if your files are not in « .3DS » format,
use « CROSSROAD » to convert them).

Viewy Oplions Camera

The IRIS 3D console

autoSIMP 119 ©Copyright 2011 SMC

O

SMC

User manual

Configuring the objects

Select « Open the configuration window » from the « Options » menu on
the IRIS 3D window.

Configuration k|
— Pasition 30 Objects ...
oL

v

= .

— Pz position of roft,

ol

v

Z .

— Rotation on {redian)

ol

L'

= .

— Size

Retrash | centenon selected object

— Golour

| I j Add | Add all

|-1|:|

[~ irwisible: liri

— Transparency .
10

The IRIS 3D configuration window

Ml

autoSIMP 120 ©Copyright 2011 SMC

O

SVC* User manual

Adding objects to the 3D world

By clicking on the | = element you access the list of 3D
objects present in the resources. For example:

[

COrps
tige
By selecting an object on that list and clicking on « Add » you add the
selected object to the 3D world. By clicking on « Add all » you add all the
objects on the list to the 3D world. The objects you have added will
appear on the list in the configuration window.

30 Objects .
[+ tige : 1

Removing a 3D file from the resources

With the right side of the mouse click the 3D file on the browser and
select « Delete ». The object needs to be deleted from the 3D world.

Removing an object from a 3D world

Click with the right button of the mouse on the object in the IRIS 3D
configuration window and select « Delete from the menu. »

Importing an “enhanced” object

Click on the “Import” button. A browser allows you to select the object to
be imported.

autoSIMP 121 ©Copyright 2011 SMC

ZSNC

User manual

Import an Ivis 3d Object N

Regarder dans : IE} i3d

Bureau

- e & et E-

2l

blue ball. 130

blue bec, 13D

blue case. 130

blue yellov, 130

rylinder with sensaors, 13D
cylinder#2 with sensors, 13D
driven long conveyor, 13D
driven long gray convesyar, 130
driven shork correeyor, 130
driven short gray conveyor, I3D
green ball, 13D

green box, 130

green case, [50

long conveyar, 130

lamg gray convewar, 130

red ball. 13D

red box, 130

red case, [3D

sensar For blue objects, [30
sensor for green objects, I30
sensor for red objects, 130
sensar For yelow objecks, 130
short conveywaor, 13D

short gray conveyor, I30
stare with cubes 130

vellow ball. 130

yellow case, 30

Haom du fichier ;

Iu:_l,llinder with sengors. |30

Fichiers de wpe

[ris 3d Dbject [*.i3d]

=
=

Duryrir I
Annuler |

The browser for selecting “enhanced” objects

Once the object has been selected, click on “Open”. A parameter window
then allows you to define the variables that will be associated with the

object.

autoSIM®

122

©Copyright 2011 SMC

User manual

x

Parameters list

Parameter | ‘ariable |
Extend cylinder 1

Fiectracted cylinder Il

Extended cylinder l2

Yalue

| %01

Mame

I Extend cylinder

Cancel | [8]4 I

The window for defining the object’s parameters

In this example (for the cylinder), the cylinder’s piloting variable and the
two ends of stroke are to be parameterized. The object is then shown in

the 3D world and in the list of objects.

Wiew Options Camera

¥ P

\

HiD€ !l ¢t ==

RISSD |

— Position

H: ID.UUDU
48 IU.UUUU
28 IU.UUUU

— Axis position of rot.

N O —
r— Fiatation on [radian)
N T
N T —

30 Objects .. [Display astiee R

@ cylinder with sensors . 3

— Colour

l:l |v Texture |

I- Inuizible |- Dietectable

| Light

Transparency
ID.SUDU

Befresh I Center on selected object

T

Add all

— Phusiczal engin
€~ Motused
(% Fised
= Use gravity
' Mawing abject

Olbject form:

 Boy Sphere (o) Capsule

| 10000 Mass
| 10000 Friction £pply phusics |

| 00000 Festitution

[Erecute automatically

The object’s position and orientation can be modified.

autoSIM®

123

©Copyright 2011 SMC

O

SVC* User manual
Exporting an “Enhanced” object

To export an object, right-click with the mouse on the object and select
“Export”. The linked objects and all of the behaviors are saved.

RIS 3D E|
Position 1 apobjeats .. ¥ Display astree T |) |
#: [o.0000 —
g |0.0000 Add a kranslation
z: [oo00 Add a rotation
- — Add a colour change
— Buis position of rot. fdd alink
#: [0.0000 a1 _
Add another behaviour
u: ID.DDDIJ
2+ [0.0000 Erase
R.ename
— Rotation on [radian) el [
B8 |3.141S
y: |0.0000
23 |1.5T08

Size
I].UUUD
—Colour—————————————— Befresh | Center on selected object
= Teuture | [-1 Add | 2dd all

|-

Irwizible [Dietectable Ilin
Light
Transparency
[os000 134
|1U
— Phuszical engine

" Motused | 10000 Mass

(% Fiued 10000 Friction Applyphysics |
= Use gravity T | Es

. . 1 estitution
i FMoving object |7 Execute automatically
Olbject form: Eoy Sphere = Capsule

After entering a name for the file, a dialogue box allows you to assign a
name to each variable used in the behaviors and to define whether this
parameter can be modified or not when it is re-read.

autoSIMP 124 ©Copyright 2011 SMC

P
@SVC User manual

x|
Parameters list
Yariable | Parameter | Editatle |
=
Il Ma
Iz Mo
Marne
[Editable Cancel | (o4 I

Example of creating a 3D simulation based on enhanced

objects

Let’s create a simulation in a couple of clicks for an operational unit: a
part destacker.

Eﬁ Propecta : [sin nonmbre)
=g Folios

Legf Folio1
----- f{) Simboloz
[+ 50 Configuacion
+-EF8 Documentacion
[+ archivo: generados
----- é Fuesta a punto

? E-ZB Afiadir un objeto IRIS 20

=23 wn escritorio RIS 30—~ |
..... l: L D ; o 20
..... E
..... &
----- C Build HTML files E
..... l:
..... 0]
----- [rains | I

autoSIMP 125 ©Copyright 2011 SMC

ZSNC

User manual

Propiedades del objeto IRIS 3D
#= E = [q

gestionar loz objetoz transparentes (mas lento @ ez punteada)
autarizar la configuracian

Pozicidn del alumbrado y= |_-|

<] <]

rotacion de la camara 5
rotacion de la camara ay’
rotacidn de la camara 5 2

Color del fondo

 m—
=

Eztos pardmetros determinan el modo utilizado en IRIS 30, "autorizar la configuracion
debe estar punteado en modo concepeion [para afiadil objetos a la escena p
parametrarlos). El eje de ratacion influye en la navegacidn 30.

RIC e

Wector de gravedad u= |D p= |_19

Anular |(0k)l

Wigw | Options Camera

g o
% A%

SC | § ey

autoSIMP 126

©Copyright 2011 SMC

P
@SVC User manual

— Fosition———— a5 Objects ... IF

— Colaur @ Biefresh | Center anselected abject: |
|*| Tiesture | | =] Add Add all |

|-

F Invizible [~ Detectable MMin

Light

— Transparency

I Ilax

Ji

— Physiczal engine

) Motused I— .
£ Fised I— Friction Apply physics
) s grauity —

= IMaving abject I estitution IF

Objectform: {7 Eoy € Sphere 0 Capsule

Execute automatically

autoSIMP 127 ©Copyright 2011 SMC

ZSNC

User manual

Import an Iris 3d Objeck N

Fegarder dans I = i3d

- & &t E-

21

blue ball,I30

blue o, 13D

blue case. 13D

blue yellow, 130

cylinder with sensors, 1530
cylinder#2 with sensors, 130
driven long corveyor, 130
driven long gray convveyor, 130
driven shork conwveyor, 13D
driven short gray convewor, [30
green ball 130

green box, I30

green case, [30

long conveyar, 130

long gray convesyar, 130

red ball. 13D

red bos, 130

red case, I3D

sensot for blue objects, 130
sensar far green objecks, 130
sensar for red objects, 130
sensar Far yelow objects, 130
short comveyor, 130

EI shark gray conveyor, 13D
store with cubes, 130D
vellow ball. 130
vellow case, 130

Maom du fichier ;

Fichiers de twpe :

Istu:ure with cubes. |30 j
=

Ilris 3d Object [%.i3d)

o Durir IJ
N

Annuler

4

The pre-defined objects are located in the “i3d” sub-directory of the
AUTOSIM installation directory.

autoSIM®

128

©Copyright 2011 SMC

P
@SVC User manual

x

Pararneters list

Parameter I ‘'ariable I
Eztend cylinder i)l

Rectracted aylinder %Il

Estended cylindsr “el2

WYalue

I el

Mame

I Eztend cylinder

Cancel | F [8]'4 I

The object is shown in IRIS3D:

View Oplions Camera

fggg 3 < !’ f ==>NRY

autoSIMP 129 ©Copyright 2011 SMC

O

User manual

7_-"/-{:'-' AUTOSIM ¥3.03 - Proyecto3

archivo Edicion Wisualizacion Programa Herramientas Yentana ¥

@ = E b (b
Prowecto x

- n Froyecta : [zin nombre)

o [
Si

+ & Corfil {, Importar uno o vanos folios existentes
+- 3% Docu
+-- 3 archiv
Puesta a punto

iz

8B Simula

£ Recursos

EF Modulos extemos

Afiadir un nuevo Folio

Crear un nuevo folio

Marmbre [un hambre genérca), deje el nombre predeterminado o ingrese un
nombre sianificativo.

T amafio [laz dimenzionez de la superfizie del folio). En forma predeterminada,
##L permite crear folios rmuy grandes [recomendada). Para crear un Gemma
elijg "Gemma'’.

|><><L [folin: demaziado grandes] j

Comentarioz [por ejemplo, la dltima modificacion, el autaor, et ...

Creado el 23/12/2011.
Modificado el 23/12/2011.

Defina las caracteristicas del nuevo folio, su tarmafio, su d 0K
nombre y eventuales comentanoz. Todo esto podia n
modificarse posteriormente, RN

autoSIM®

130 ©Copyright 2011 SMC

P
@SVC User manual

r_f"-{"r'-' AUTOSIM ¥3.03 - Proyecto3

o archiva Edicion | Wisualizacion | Programa Herramientas Yer
Barra de herramientas

ﬁ - D = Batra de estado ___

Proyecto
= ﬁ Proyecta : [zin
-l Foliaz *_ Zoom + Chrl++
@ Folia] - Zoar - Chrl+-

¥ Simbalos| . _
- ﬂ Configuray Ampliar mejor

+- @@ Documen Pantalla completa Fa
+- 3 archivos g
ﬁ Puesta aﬂ,\ Hiperpaleta ALT+H /‘|:
e lris T

With the palette, design a Grafcet with two steps. A right click on the
sheet lets you access the link drawing application to loop back the

Grafcet.

-//_V-? AUTOSIM ¥3.03 - Proyecto3
=lslx]

o brchivo Edicn Yisudizacion Programa Herramientas Yentana ?

3

AEHE G ? 0 BaaH
Proyecto x
= ‘ Proyecto: (sin nombre]
=g Folios
o Folo1 H
) Simbolos

] & Configuracin
- 33 Documentaciin
archivos generados
Puesta a punto
@ Iis
& Sinula
[Recursos
[Medulos estemos

etaga inicial

etaga nomal

asistents

I 3 Navegadon | @ Blaneos gPaleta . e
d Edicidn .- ’ &
I

INTERNATIONAL TRAINING

¥

b4

i

é. =‘ J ‘ __F\\nws)\tnmpi\ac\én APuestaapunto,’
M 5i11 SMCES 251350 .

trazar un vinculo entre dos bloques

A right click on the cube store allows you to access the list of variables.

autoSIMP 131 ©Copyright 2011 SMC

Z SMC

User manual

@ AUTOSIM ¥3.03 - Proyecto3 u EE‘
o drchiva Ediidn Visudlzacén Programa Herrantientas Ventana 7 jﬂs 3 ;J__‘_)ﬁ
- View Options Camera

BpH S B 0 } Q@
‘Pra_ve(la X A
= n Proyecta : (sin nombre]]
= gf* Folios
L Foliod k|
0 Simbolas
!- ’"ibd’ Configuracidn
+- 33 Documentacin
[3 archivos generados
) Pugsta a purto
-G liis
P B Q Esgiitorio o
& Simula o, &
=[] Recursos e
(2] store voth cubes.x
] cubex
(0] verinx
(0] tigex
(] pousseul.x
(] capteurs .
(] it Add a translati
(] raix Adday
(] qudelateralZx Add afeolowr change
(] ouidelateral s Add &gk
+ [bouchonk Add anath
& Modulos extermos
Erase
Rename
Duplicate:
1 ‘ 2% A% 3 ¢ e V2 ’
4 Navegador | @1 Blancos | G Palsta I T i
m pasition min rod (%L2)
postion max rod (%I1) r
gl INTERNATIONAL TRAINING S8
é AT T T ntos) compitacion [Pussta a punto [
(NUM) 811 SMICES 231350

Add a kranslation

Add a rokation

Add a colour change
Add a link,

Add another behaviour

Erase
Renarne
Duplicate

m

H

=l

Q

g
rer

I

position min rod [el2)
position max rod (%11}

autoSIMP 132 ©Copyright 2011 SMC

O

SI u IC User manual

Move the cursor over the action rectangle and left-click.

| T —

Wiew Cplicis Cdiniera

Extend cylinder {01}

View Oplions Camera

Repeat this operation to place the “cylinder extended” element on the
first transition and “cylinder retracted” on the second.

autoSIMP 133 ©Copyright 2011 SMC

P
@SVC User manual

This is the final result:

He3ortir wérim%sQl

et serssh I

Yue Cplions Camera

—— WEerin rentréiila

e

You can now click on the “GO” button in the tool bar to launch the
application.

This complete example is in the “examples\Process
simulation\3D\physical = engine” sub-directory with the name
“destacker.agn”.

Applying a behavior to an object

Click with the right button of the mouse on the object in the IRIS 3D
configuration window and select « Add ... » from the menu. ».

Name of AUTOSIM variables

The name of AUTOSIM variables used in the behaviors are limited to the
following syntaxes:

Access to boolean variables

On: output « n », for example 08, O10,
/On: complement of the output « n », for example /O1, /O15,

autoSIM® 134 ©Copyright 2011 SMC

% SNC

User manual

In: input « n », for example 10,14,

/In: complement of the input « n », for example /14, /156,

Bn: bit « n », for example B100, B200,

/Bn: complement of bit « n », for example /B800, /B100,

The access to bits B is limited to a table of linear bits, a command #B
must be used to reserve bits (see the language manual),

Access to numeric variables

Mn: word « n », for example: M200, M300

Fn: float « n », for example: F200,F400

Adding a translation

Name

Translation

tige : 2

— Position

% Mo pilating

™ Bistable pilating

{ AUTOMSIM

[Fonostable piloting I

™ Mumerical pilating |

O
o<

Mini- | aonn

Mazi {00000

Time ta runin ms II:I.I:II:IIIII:I

{00000

— Detection
I_ Fini sensor
I_ Mlani sensor

|- Other sensor
I_ Other sensor

|- Other sensor

|_ Other sensor

|0.0000

|0.0000

{00000

{00000

|0.0000

|0.0000

Cancel

i

|0.0000

|0.0000

Properties of a translation

The first area is used to enter a generic name for the translation. This
name appears in the list of the IRIS 3D configuration window, it is only
used for comments and can be left blank.

autoSIM®

135

©Copyright 2011 SMC

SMC

O

User manual

Axis
Establishes the dimension to be applied to the translation.

Type

- without driving: no translation, this is used to make a translation
inoperable without needing to delete it (to run tests for example)/

- bistable driving: two boolean variables: the translation is driven by
two boolean variables: the first drives the translation in one
direction (from min to max), the second in the other direction (from

max to min).

State of the first|State of the | Object

variable second variable

0 0 Immobile

1 0 Translation of min to
max

0 1 Translation of max to
min

1 1 Immobile

- monostable driving: a boolean variable drives the translation if the
variable is true

Variable state Object
1 Translation of min to max
0 Translation of max to min

- numeric driving: the position of the object on the designated axis is
equal to the specified numeric variable.

- The “...” button allows an “enhanced” mode to be defined for this
type of link:

autoSIMP 136 ©Copyright 2011 SMC

O

SI V IC : User manual

autoSIM®

Numerical piloting 7 X|

(+ numeric variable gives position : m{100 or [{10000 or F: @
¢~ numeric variable gives position calculated with min and max : 0<=m or | or
f<=10000

(" numeric variable gives speed : -10000<=m or | or F<=10000

numeric variable gives position to be reached calculated with min and max s
" 0>=m or | or F>=100, acceleration and deceleration are managed
automatically

Percentage of the total movement used for the phase of | 10,00
acceleration or deceleration

‘ariable of return of the position (O<=m or | or f or 16xi <=10000) I
Gray code
I~ coded value (|
or m only)

Cancel [| OK I

O,

The content of the numeric variable defines the object’s position.
If it is a word the position will be set at the value divided by 100;
if it is a long, it will be set at the value divided by 10000; if it is a
floating-point, it will be set at the value contained in the floating-
point. Min and max define the limits for these values.

The content of the variable defines the position between the min
and max values. 0 = min position, 10000 = max position.

©

The content of the variable gives a speed of displacement
ranging from -10000 to 10000.

The content of the variable gives a position to be reached as a
percentage of the stroke between min and max: 0 = min
position, 100 = max position. The acceleration and deceleration
are calculated automatically. The “percentage of movement
used...” parameter defines the length of the acceleration and
deceleration phases.

137 ©Copyright 2011 SMC

O

SMC

®

Allows a variable to be defined that will receive the position of
the object constantly. The variable can be a word, a long, a
floating-point or an input (in this case, this input and the next 16
inputs receive the position like an absolute encoder linked on
the inputs). The “value in gray code” checkbox allows this value
to be obtained like a gray encoder.

User manual

The “examples\Process simulation\3D\numerical pilotings” sub-
directory contains examples of these different modes.

- SIMULA: the object’s position on the designated axis is given by
the content of a variable managed by an SIMULA object. The “...”
button allows an enhanced mode to be defined for this type of link:

AUTOMSIM piloting i x|

& Hormai
Coefficient

(" The symbol is associated a motor AUTOMSIM object I 0.00000020

®

The variable associated to an SIMULA object defines the position
between min and max.

©

The variable associated to an SIMULA “motor” object modifies the
position according to the coefficient (it makes it possible to define
the relationship between the rotation speed of the SIMULA motor
and the speed with which the position varies).

The “examples\Process simulation\3D\SIMULA piloting” sub-
directory contains examples illustrating both these modes.

autoSIMP 138 ©Copyright 2011 SMC

r
"-//;SVC User manual

Amplitude and origin

The « Min » and « Max » areas establish the amplitude and origin of the
translation.

Speed
The stroke time establishes the speed for going from the min point to
max point (it is identical to the return speed).

Detection

This is used to set the sensors for the translations. The min and max
sensors manage the limits, the other 4 possible sensors can be used to
create intermediate positions.

Adding a rotation

The parameters are completely similar to the translations see chapter
Adding a translation. The angles are expressed in radians.

The object rotation center must be set for each object in the IRIS 3D
configuration window.

Adding a color change

Maodification of colour

tige : 2 I

— Colaur

[The zame as the abject I ;I

% Ma pilating

r A wariable makes the choice between two calours or bwo textures [always I
apply the "if False” if waid]

If False

- =
IF true I_ O nothing if False
| | =

= AUTOMSIM |

ulti textures mode delay [ms] Iu_mun

Cancel |

Color change

autoSIMP 139 ©Copyright 2011 SMC

O

Sl v IC : User manual

Driveing of a color using a variable must refer to a boolean variable.

The “The same as object...” checkbox allows you to apply the same color
as another object.

Controlling a color by a variable must reference a Boolean variable.

Color control can also be performed with an SIMULA variable
(associated to an SIMULA indicator object, for example).

If the “do nothing if false” box is checked, no color is applied if the
variable’s status is false. This makes it possible to associate several
changes of color to a single object if more than 2 colors are needed.

The pull-down lists allow a texture to be selected instead of a color. To
have a texture shown in a pull-down list, place the (“.bmp” or “.jpg” file) in
the AUTOSIM project resources.

Multiple textures

It is possible to associate several textures that will be applied
automatically. To do this, associate several “Color modification” type
behaviors to a single object and document the “Time for multiple texture
mode” area with the time at the end of which the texture will be applied
automatically. The pre-defined “Conveyor Belt” object uses this
technique.

Adding a link

A link forces an object that this behavior is applied to, to follow the
movements of another object.

tige @ 1 I

[T Lnked to the I j " I

Plways it ernpty

Lancel

Ok

Links between objects

autoSIMP 140 ©Copyright 2011 SMC

O

SI V IC : User manual

The link condition can be a boolean variable. The link is unconditional
(object always linked) if the condition is left blank.

Adding another behavior

This is used to use a sound associated to a condition, or to change a
boolean variable to 1 when the user clicks with the right or left side of the
mouse on the object the behavior is applied to.

Other behaviour
il

— Sound

Launching Stop

{* Mosound) Once " Continu | | I ;I

{* MNosound © Once " Continu | | I ;I

{* Mosound § Once " Continu [[| ;l

{* Mosound § Once " Continu | | I ;I

{* MNosound § Once " Continu [[| =l
— User actions

Wariable right click Wariable left click

I I |- right click anchor camera

— Collision - . =
Test if collision with one

‘Wariable Test if collision with object object with calor

! ! 2 o [e
the object in collision I [always if waid)
becomes linked with this
object
If callizion, move object
regarding the Fallawing wectar: ¢ |0.000000 4 |0.000000 - |0.000000
Cancel I 4k I

Other behaviors

The elements of the “Sound” group make it possible to play a sound
associated to a condition.

The elements of the “User actions” group allow a Boolean variable to be
set to 1 when the user clicks with the right or left mouse button on the
object that the behavior applies to. The “A right-click on the object
anchors the camera” checkbox makes it possible to lock the camera
(which defines the display point of view in the IRIS 3D window) on the
object that the behavior applies to.

autoSIMP 141 ©Copyright 2011 SMC

’-
"@SVC User manual

The elements of the “Collision” group make it possible to define a
collision test:
- either with one object in particular,
- or with objects having a particular color (a choice of 2 colors is
possible).

The “Variable” area can be documented with the name of a Boolean
variable that will be set to true if the collision test is true.

The “The object in collision becomes linked with the object if” checkbox
makes it possible to link the object that comes into collision with the
object to which the behavior is applied. A variable can condition this link.
This technique makes it possible to easily handle the simulation of a
clamp or suction cup.

The vector allows you to give a speed to an object that comes into
collision with the object to which the behavior is applied. The pre-defined
“Conveyor Belt” object uses this technique.

Physical engine

The physical engine makes it possible to handle gravity and the
interactions between objects so as to obtain a very realistic simulation.
For objects subject to gravity, only block, sphere or capsule shapes are
handled by the physical engine.

For each object you can define the type of handling used by the physical
engine:

Phys=ical engine :
£ Mot uzed | 10000 plass
(* Figed [10000 Friction £pply physics
" Uze graity L
) . I 00000 Restitution .
[Mlawing object |7 Execute automatically
Objectform: (% By € Sphere € Capsule

“Not used”: the object is not handled by the physical engine: it is not
subject to gravity and does not interact with the other objects.

“Fixed”: an object handled by the physical engine that does not change

position but which interacts with the other objects: the housing of a
machine, for example.

autoSIMP 142 ©Copyright 2011 SMC

P
-“//I-SVD User manual

“Use gravity”: a moving object handled by the physical engine, subject to
gravity and interacting with the other objects: a box moving on a
conveyor belt, for example. For this type of object, the mass, coefficients
of friction and restitution and the primary shape of the object (block,
sphere or capsule) have to be defined.

“Moving object”: a moving object handled by the physical engine, which
is not subject to gravity and which interacts with the other objects: a
cylinder rod pushing objects, for example For this type of object, the
coefficients of friction and restitution and the primary shape of the object
(block, sphere or capsule) have to be defined.

The “Apply physics” button allows the physical engine to be launched.
The “Automatic execution” checkbox automatically launches the physical
engine when the AUTOSIM PC executor is installed.

The “examples\Process simulation\3D\physical engine” sub-directory
contains examples illustrating the physical engine being used.

autoSIMP 143 ©Copyright 2011 SMC

O

SI u IC User manual

IRIS 3D example

Yiew OplLions

« Examples\Simulation PO\3D\Scharder.agn »

autoSIM® 144 ©Copyright 2011 SMC

O

Sl v IC : User manual

IRIS 3D is used to design simulation applications of 3D operating parts.
The objects must be created in a standard model maker and imported in
the AUTOSIM project resources. Behaviors are then applied to the

objects to create 3D animations.

autoSIMP 145 ©Copyright 2011 SMC

O

SMC.

User manual

Introduction to SIMULA

SIMULA is a pneumatic / electrical / hydraulic simulation module.

It can Dbe used independently or in addition to the
AUTOSIM? applications:

autoSIMP 146 ©Copyright 2011 SMC

O

SI u IC User manual

Installation

To install SIMULA, install AUTOSIM. In options, be sure that « SIMULA »
is checked.

Practical experience

Let us do a simple example: cylinder + directional valve

.—!":{"'_*- AUTOSIM ¥3.03 - Proyecto3

g Archivo Edicidn Visualizacidn Programa Her

BAoEH & &

Proyecta x

- ‘ Provecto : [zin nombre]
- Foliog

g Folio 1
> Simbolos

+- 28 Configuracin
+- 3% Documentacidn
+ archivos generados
Puesta a punto
A Inis
& Simula
+-[] Recursas
7 Modulos extermos

Click with the right side of the mouse on « SIMULA »

.—:’/f*- AUTOSIM ¥3.03 - Proyecto3

g Archivo Edicidn Wisualizacidn Programa He

AoEH & &

Proyecta =

- ﬁ Provecto : [zin nombre]
- Foliog

g Folio 1
1 Simbolos

+ & Configuracian
+-[4F Documentacion
+ archivoz generados
Puesta a punta
W Inis
55
-3 Re| Afadr SIMULA ||

EF Madiloz externas

Select “Add an SIMULA page”

autoSIM® 147 ©Copyright 2011 SMC

O

SMC

User manual

-!/a?'-‘ AUTOSIM ¥3.03 - Proyecto3

BAoHE & ®

Proyecta x

&% Archiva Edicidn Wisualizacidn Programa Herramientas Wentana ©

LB

- ﬁ Froyecto ; [zin nombre]
=g Falios
& Falio 1
Q} Simbolos
- &8 Configuracicn
+-C Documentacidn
+ archivo: generados
Puesta a punto
I
=& Simula
& Simula 1
+-] Recursos
7 Modulos externos

Afiadit un objeto

Demuestre los acoplamientos quebrados

Fijar unidades por defecto. .. 3

Click with the right side of the mouse on the SIMULA sheet (right part)

then select “Add an object”

AUTOMSIM object assistant

---+.|. Digital electronic
---++ Draw
---+.|. Electric
-4 Electric (JIC]
---++ Hydraulic
---+.|. Hydraulic & preumatic
- Other
E!---"'.'. Prieumatic
+.|. Acceszom
T Actuatars
EI---++ Cylinders
Bellows actuator

[T Brake
Double acting cylinder with sensors
Double acting cylinder:
[~ Long
Single acting cylinder spring exit with sensors
Single acting cylinder spring exit

Single acting cylinder spring returm
- Smal
..o Motor 1 direction

project.

Single acting cylinder spring return with sensars

;I Preview

El

Uze the tree to zelect an object then click on "0pen' ta add the object to a

<]

LCancel | Open I

Select “double acting cylinder”, and then click on “Open”.

Repeat the steps above then add a 4/2 directional valve with monostable
hand control, a pressure source and a pneumatic exhaust.

autoSIM®

148

©Copyright 2011 SMC

O

Sl v IC : User manual

You should obtain the following:

L= T i:fw

©V

Create connections between the different components: Move the cursor
over the connections (light blue circles), press the left button of the
mouse then release it, move the cursor of the mouse to the connection
where the link must be connected, press the left button of the mouse
then release it.

Repeat the above step for each connection until the following result is
achieved:

Click on the “GO” button on the toolbar.

autoSIMP 149 ©Copyright 2011 SMC

O

SMC

User manual

The cylinder shaft will come out. To make it go back in, click on the
manual control of the distributor.

While it is running, you can make changes, add objects, move them,
etc...

With SIMULA, it is not necessary to stop simulation!

To end the simulation, click again on “GO”.

autoSIMP 150 ©Copyright 2011 SMC

O

SVC* User manual

Using SIMULA

Organizing applications

SIMULA applications are written on one or more sheets that appear in
the tree structure of AUTOSIM. The objects are then placed on the
sheet(s): an object = a component such as a cylinder or an electrical
contact.

Opening an existing application

The subdirectory « Examples / SIMULA » of the installation directory of
AUTOSIM contains examples done with SIMULA.

Creating an SIMULA sheet

To add an AUTOSIM sheet in the tree structure of a project, click with
the right button of the mouse on the “SIMULA” component in the tree
structure, then select “Add an SIMULA page”.

.—:’/f*- AUTOSIM ¥3.03 - Proyecto3

g Archivo Edicidn Wisualizacidn Programa He

AoEH & &

Proyecta =

- ﬁ Provecto : [zin nombre]
- Foliog

g Folio 1
1 Simbolos

+ & Configuracian

+-[4F Documentacion

4+ 3 archivos generados
Puesta a punta

W Inis

;1
-] Rel| Afadir SIMULA ||
EF Madiloz externas

An SIMULA sheet is then created.

autoSIMP 151 ©Copyright 2011 SMC

SMC

O

User manual

Adding an object onto an SIMULA sheet

Click with the right button of the mouse on the SIMULA sheet (shown
below on the right) and select “Add an object”.

—f_'*- AUTODSIM ¥3.03 - Proyecto3

&% Archivo Edicion Wisualizacion Programa Herramientas Ventana 2

AoHE & B O ORI

|
1

]
[

Proyecta x
= E Proyecta : [zin nombre]
=g Folios
o= Folia 1
©» Simbolos Afiadiv un obisto

+ '.'j'ﬁ Configuracian
+- 3 Documentacion
+--[3 archivos generados
P.UESta apunto Fijar unidades por defecto. .. 4
s
- ff Simula
& Simula 1
+-[_] Recursos
B Madulos externas

Dermuestre los acoplamientos quebrados

The selection assistant for an object then appears:
AUTOMSIMobjectassistant

---"'.|. Digital electranic ;I Presview
---++ Diraw
¥4 Electic
Electric [JIC)
Huydraulic
4 Hydraulic & pneumatic
T Other
E|---+.|. Prieumatic
---+.|. Accesson
E|---++ Actuatars
Lf_|---++ Cylinders |
Bellow actuator

- T Brake | :
Double acting cylinder with sensors b . .
g Diouble acting cylinder

- Long

Single acting cylinder spring exit with sensors

Single acting cylinder spring exit

Single acting cylinder spring return with sensors
Single acting cylinder spring retum

T Small

vl hotor 1 direction ﬂ

|lze the tree to select an object then click on "Open'’ to add the object to a
project.

Cancel | Open I

The assistant shows a preview of the object in the bottom of the window.
To add the object onto the SIMULA sheet, click on “Open the object”.

autoSIMP 152 ©Copyright 2011 SMC

ZSNC

User manual

Then move the mouse to place the object on the SIMULA sheet, press
the left button of the mouse and release it to leave the object.

You will obtain the following result:

4 AUTOSIM Y303 - Proyecto3 E] (3 @
& frchivo Edicon Visualzacion Programa Hemamientas Ventana ? _|& ﬁ
AH S & 0 3 QH
Prayacts &

e n Froyecto: [sin nambre)
=-gff Faliog
& Folo

(=3

&) Simbalos
o) Conbowaciin

(44 Dacumentaciin Label (H) Label
0

#- [achivos generados
Puesta a punto]
@ lis Label
- &% Simula J ;

& Simila 1
[Recursos
[Madulos extemos

¢ |
| ¥ Navegador | ¢ Blances ﬂpa\m o Folo1GRT & Simula 18]

%601 : compilacion ... abortada.
0! compilacién ... abortado
0! compilacién ... abortado

=

|=

GICh

¥ INTERNATIONAL TRAINNG
{ ‘ | | F\Inlns Atumpi\amén ?\Puestaapunta ’/'

Mensajes

autoSIMP 153 ©Copyright 2011 SMC

P
gsvc User manual

Using the palette

1- Click on the object(s) in the palette (they appear as selected):
framed by black squares).

% AUTOSIM ¥3.03 - 3-/ iange_Motor_Roktation.agn

&% Archivo Edicion Yiglslizacion Programa Herramientas Wepbana @
BRoEH Sy F (B & 53 CRICNSEY
Proyecto x
Electyl- contacts [JIC] @
tric - contacts
lectric - mokors
ectric - outputs [JIC] —&TOF
Electic - outputs
Electric
(=) o
(= i
£
!
0 oodp o h—-Eh—-(— START -
-
S+ B NI R S
@ {} {} {} } { {}
= b ; ay
b & -
L) Pyt) — ki
Hydraulic - actuators
Hudraulic - directional valves
Hudraulic i
Preumatic - actuatars

autoSIMP 154 ©Copyright 2011 SMC

P
@SVC User manual

2- Click on the selected object(s), keep the button pressed and drag
the object onto the sheet.

ﬁ AUTOSIM ¥3.03 - 3-Change_Motor_Rotation.agn

Selecting one or more objects.

To select an object, move the cursor of the mouse over the object, press
the left button of the mouse and release it. Black squares appear around
the objects when they are selected:

L |
L

<]

Fict Pt |

To deselect an object, repeat the same step.

autoSIMP 155 ©Copyright 2011 SMC

&% Archivo Edicion Visualizacion Programa Herramientas [@/entana 7
AoHE & & (b] CREC NSt
Proyecto x
Electric - contacts [JIC] 24y
Electric: - contacts
Electric - matars .
Electric - outputs [JIC] —sTOF
Electnic - outputs
Electrc u
3 4
O L. £
b L. =
¥ oo Togow —START1 -
S R N
? @ 4 I L R
i] £ |
b- 2
o P & — kM2
A ST
Hydraulic - actuators 1
Hydraulic - directional valves
Hudraulic s + Krm[
Preumatic - actuators
Prieumatic - directional valves

O

SVC* User manual

To select several objects: keep the SHIFT key of the keyboard pressed
and select several objects following the method described above.

To select several objects that are in the same area: press the left button
of the mouse, move the cursor of the mouse — a selection rectangle
emerges — release the left button of the mouse when the selection
rectangle is of the desired size.

To select an object that is under another object (several objects can be
superimposed), click several times with the left button of the mouse on
the objects covering each other: at each click, the selection moves from
one object to the other.

Selecting one or more objects

Move the cursor over one or more selected objects — the cursor of the
mouse takes on the appearance of four direction arrows — press the left
button of the mouse, move the objects by moving the mouse, release the
left button of the mouse when the desired position for the objects is
reached.

Deleting one or more objects

Move the cursor over one or several selected objects, press then release
the right button of the mouse and select “Delete”.

the orientation of one or more objects

Move the cursor over one or more selected objects, press then release
the right button of the mouse and select the desired setting in the
“Rotation” menu.

Copying/cutting one or more objects to the clipboard

Move the cursor over one or more selected objects, press then release
the right button of the mouse and select “Copy” or “Paste”.

autoSIMP 156 ©Copyright 2011 SMC

P
@SVC User manual

Pasting one or more objects from the clipboard

Press then release the right button of the mouse over an empty area of
the SIMULA sheet and select “Paste” in the menu.

Modifying object properties.

Move the cursor over one or more selected objects, press then release
the right button of the mouse and select “Properties”.

Example of the properties of a directional valve:

Properties |

Symbol & #1 a7 Symbol & #2
| - |
Ivlﬂ: CI: s I vl
= | >< r I

Syrbal B #1 Symbal B #2

4

H—ﬂ,

Reference

Designation

Supplier

.3

LCancel | ju] 8 I

R R e

4

Exporting one or more objects

Move the cursor over one or more selected objects, press then release
the right button of the mouse and select “Export”.

The objects are exported to files with the extension .ASO.

By exporting to the subdirectory “SIMULA/Iib” of the installation directory
of AUTOSIM, the new objects created appear in the SIMULA assistant.
The name of the file is the name shown in the assistant. If the name
must contain the character ‘/’, substitute this character with ‘@’ in the file
name.

autoSIMP 157 ©Copyright 2011 SMC

SMC

O

User manual

Advanced functions

Interactions between objects

Interactions between SIMULA objects are realized either by visual links
defined on the sheets (a pneumatic or electrical line connecting two
objects, for example) or by a symbol. A symbol is a generic name, for
example “mini sensor’. A symbol may have any name whatsoever
except for key words reserved for the names of AUTOSIM variables (see
the AUTOSIM language reference manual) and symbols used in the
AUTOSIM symbol table.

Creating sensors associated with a cylinder

The mini and maxi end stops of a cylinder can be configured in the
properties of the cylinder. Example:

Properties il

Sengor mini spmbal
=1 £

| Senzor maxi symbal
B

| Ima:a{
T T - -
|:| Rod pozition symbal

Initial rod position (0 - 100%)
D:\. - 1 - |n.nu
Reference

| |

D esignation

I LCancel |
Supplier

References for the symbols used can be found in the electrical contacts

autoSIMP 158 ©Copyright 2011 SMC

P
'—@SVC User manual

For example:

Properties il

Symbaol

Imir‘

The sensors can also be positioned directly on the SIMULA sheet. For
example:

cl 2
| <P
R A B v
VYV V]
va TT\E
O,
ol
@0 oy

+
DT

The gray circle associated with the sensor objects must coincide with the
gray dot located on the piston or the cylinder shaft so that the sensor is
activated.

autoSIMP 159 ©Copyright 2011 SMC

P
@SVC User manual

As seen above, the symbols used in the SIMULA objects allow
information to be exchanged between the objects. Where you want to
communicate solely between SIMULA objects, these symbols cannot be
the names of either AUTOSIM variables or AUTOSIM symbols. If you
use the name of an AUTOSIM variable or an AUTOSIM symbol, these
AUTOSIM objects reference the AUTOSIM variables and may therefore,
depending on the actual situation, read or write to the automaton
application’s variables.

Example:
’.-—[$:| El
—— extended cwvlinder
M ‘;E|T t'II 1 Hretract cy¥inder
ot by
—— rectracted splinder
Sensa mini spmbol
A LA = E[M_'j [retraste3 apinder
l"ll l|!| U l'l'] Sensa masi symbi
I ki [| esterded oylinder
Rod posion symbol
Symbol #1 ’ 32 j Sembdl H2
I stand cylindsr = : I cccccccc yirzer
|-.| ANA . |T_|

autoSIMP 160 ©Copyright 2011 SMC

S
2

User manual

Interactions between

SIMULA objects and the

operational unit simulator

IRIS 3D

In the IRIS 3D “Translations” and “Rotations” behaviors, the “SIMULA”
type allows you to reference the position of an SIMULA cylinder object
(see the example complet2.agn).

T

=
Goncel|
M /

tiga : 1 |
[~ Positisn / [
/ %
[CIR
~
suliares rr
C Gnbapois | | -
" Monostabie plating [
7 Hurmsricl poting
% AUTOMSIM [ronpas]
M | o 00000
Mad i.n:-n:-:lu-:-u
Tene terminme [So0000000
[~ i sansor |7
r_ Ml panesr I—
[ouher sanser [[o.000000 [o.000000
[daher sansor I [ul:-:-uu:-:n]nm:n:uu
[T oarer panser | B FE Lancal |
-
daher sanser | [ooo0000 | 0000000 ITI
autoSIMP 161

©Copyright 2011 SMC

S
2

User manual

Interactions between SIMULA objects and the IRIS2D

supervision objects

How can a link be made between an IRIS2D pushbutton or switch and
an SIMULA pushbutton or switch?

x|
Ty 3
Reference A
|
Dresignation
|
Supphes
I
_ Corcel |

autoSIMP 162 ©Copyright 2011 SMC

P
gsvc User manual

How can a link be made between an SIMULA object and an IRIS2D
indicator light?

]
| B -
— Rl
&
ra{m _,ﬂ
Designation /
|
Supphes /
|
_ Cocal |
x|
::;ﬁmh is prassed
joo=0 ‘?' _I
o B
&
[_I_
- o |
oy | [ox]

Comments: note that the SIMULA variables are considered as numerical
variables. It is therefore necessary to write “su=1"

autoSIMP 163 ©Copyright 2011 SMC

P
@SVC User manual

Drag and drop from an SIMULA variable to an AUTOSIM sheet

This application is used, for example, in “Beginner” mode in order to be
able to “drag” the name of inputs or outputs from the automaton to the
AUTOSIM sheet.

To use this application, use a “Design”-type SIMULA object and
document the “Drag and drop” section with the text that could be
“dragged” from the SIMULA sheet to the AUTOSIM sheet.

Propriétés x|
| Abed - |

il

Texte

|zin

Forte .. |

Drag and drop
&0

Référence

[ézignation

Fournizzeur

Annuler | ak. I

autoSIM® 164 ©Copyright 2011 SMC

SMC

O

User manual

User-definable objects

The user-definable object will allow you to create your own simulation
objects.

To create such an object, open the following object:

AUTOMSIM object assistant

E|---+.|. Freset objects Preview
I$|---+.|. User defined objects
Uzer defined object
---++ Digital electronic
---+.|. Draw
74, Electic

-5 Electric LIC)

---+.|. Hydraulic

---+.|. Hydraulic & preumatic
---+.|. Other

---+.|. Preumatic

w b w b A b w

Uze the tree to zelect an object then click on "0Open” to add the object to a

ject. 4 -
pro|ec[i [[[LCancel | Open I

autoSIMP 165 ©Copyright 2011 SMC

ZS\NC

User manual

The object is shown as a grey square as long as it has not been

parameterized:

Z7 AUTDSIM ¥3.03 - Proyecto3

#% Archivo Edicidn Wisualizacidn Programa Herramientas Wepkana 7

BAoHE & B 0

Proyecta x

= E Proyecto : [zin nombre]
-l g Foliog
&= Folio1
Q} Simboloz
+ & Canfiguracidn
+-d8 Documentacidn
+-[} archivoz generados
Puesta a punto
A g
—|- & Simula
M| Simula 1
+-[] Recursos
B Médulos extemos

To access the object definition, open the object’s properties (select the
object, right-click over it then “Properties”) and click on “Define the

object”.

Prwsiclic |

FEE e

|

JknznEicn

|

|

=Rh
D ks

autoSIMP 166 ©Copyright 2011 SMC

S
2

Definition of the object il

Diesigy
Irsert [elete Fdadifiy

Program
Insert Delete fl cifiy

Cannec tions
Insert Delete 1 dify

Object width: [1p0 = Object height: |1 [3 _
= = Cloze

The “Object width” and “Object height” areas allow you to define the
dimensions of the object.

The “Designs”, “Program” and “Connections” areas allow you to define
the object’s design (its appearance), its behavior and the connections
respectively.

Designs

This area allows you to define the design of the object with the help of
the design primitive. The “Insert”, “Delete” and “Modify” buttons allow you
respectively to add or delete a primitive or to modify the parameters
associated with a primitive. The design primitives use this system of co-

ordinates:

0/0

»
|

Object Horizontal axis

v Vertical
axis

Each primitive can receive one or more parameters.

autoSIM® 167 ©Copyright 2011 SMC

P
‘—@SVC User manual

Note that the design primitives only define objects without rotation; the
design with rotation is automatically generated by SIMULA. The same is
true for the scale: primitives design at scale 1; SIMULA handles scaling
according to the zoom selected by the user.

By clicking on “Insert”, a dialogue box allows you to select a design
primitive.

MDVE move the pen, parameters: horizontal pozsition, vertical pozition
LIME : draw a line, parameters : horizontal position, vertical pozition
_F!EEIT draw a rectangle, parameters: hor. pogition 1, wert. position 1, hor. position. 2, vert. position 2

List of design primitives

[FE=——

Drawing primitive
These primitives produce a drawing.

MOVE
Moves the pen (without drawing).

Parameters:
- horizontal position,
- vertical position.

LINE
Draws a line from the pen’s current position to the position indicated.

Parameters:
- horizontal position,
- vertical position.

RECT
Draws a rectangle.

Parameters:
- horizontal position of the top left corner,
- vertical position of the top left corner,
- horizontal position of the bottom right corner,
- vertical position of the bottom right corner.

autoSIMP 168 ©Copyright 2011 SMC

P
-“//I-SVD User manual

ELLI
Draws an ellipse.

Parameters:

- horizontal position of the top left corner of the rectangle containing
the ellipse,

- vertical position of the top left corner of the rectangle containing the
ellipse,

- horizontal position of the bottom right corner of the rectangle
containing the ellipse,

- vertical position of the bottom right corner of the rectangle
containing the ellipse.

RREC
Draws a rectangle with rounded corners.

Parameters:
- horizontal position of the top left corner,
- vertical position of the top left corner,
- horizontal position of the bottom right corner,
- vertical position of the bottom right corner,
- horizontal rounded corner radius,
- vertical rounded corner radius,

TRIA
Draws a triangle.

Parameters:
- horizontal position of point 1,
- vertical position of point 1,
- horizontal position of point 2,
- vertical position of point 2,
- horizontal position of point 3,
- vertical position of point 3.

CHOR
Draws a chord (intersection of an ellipse and a straight line).

Parameters:

autoSIMP 169 ©Copyright 2011 SMC

Sl v IC : User manual

horizontal position of the top left corner of the rectangle containing
the ellipse,

vertical position of the top left corner of the rectangle containing the
ellipse,

horizontal position of the bottom right corner of the rectangle
containing the ellipse,

vertical position of the bottom right corner of the rectangle
containing the ellipse,

horizontal position of the start of the line,

vertical position of the start of the line,

horizontal position of the end of the line,

vertical position of the end of the line.

ARCE
Draws an arc of an ellipse (the part of an ellipse cut by a straight line).

Parameters:

horizontal position of the top left corner of the rectangle containing
the ellipse,

vertical position of the top left corner of the rectangle containing the
ellipse,

horizontal position of the bottom right corner of the rectangle
containing the ellipse,

vertical position of the bottom right corner of the rectangle
containing the ellipse,

horizontal position of the start of the line,

vertical position of the start of the line,

horizontal position of the end of the line,

vertical position of the end of the line.

TEXT
Draws a text box.

Parameters:

horizontal position,
vertical position,
text.

autoSIMP 170 ©Copyright 2011 SMC

P
-“//;SVC User manual

Attribute primitives

These primitives modify the layout of the drawing primitives (the line or
fill color, for example).

BRUS
Modifies the fill color for figures or the background color for text boxes.

Parameter:
- color.

PENC
Modifies the color of lines or text.

Parameter:
- color.

FONT
Modifies the font of the text.

Other primitives

JUMP
Unconditional jump.

Parameter:
- label.

JPIF
Conditional jump.

Parameters:
- label,
- element 1,
- type of comparison,
- element 2.

(See the programming primitives below for more information).

autoSIMP 171 ©Copyright 2011 SMC

% SNC

DISP

Displays the state of a variable. Can be used for debugging an object by
displaying the value of a variable associated with the object.

User manual

Parameters:
- variable,
- horizontal position,
- vertical position.

Program

This area allows you to define the program governing the object’s
working. Each object has variables:

128 32-bit integer variables,
128 32-bit floating-point variables.

And also for each connection:

- a floating-point value on input,

- a floating-point value on output,

- an associated writing mode that can have the following values:
o 0: no writing has been done,
o 1:the “floating-point value on output” has been written,
o 2:a connection has been realized with the connection whose

number is in “floating-point value on output”,

o 3:locking (pneumatic or hydraulic plug).

The following internal integer variables are special:

125: contains 0 if dynamic visualization is active, 1 if not (useful in order
to have a different design for dynamic visualization and otherwise).

126: contains a value representing a user event: 0=no event, 1=left
mouse button released, 2=left mouse button pressed, 3=right mouse
button released, 4=right mouse button pressed.

127: contains the elapsed time in ms between 2 operations of the
program.

autoSIMP 172 ©Copyright 2011 SMC

O

Sl v IC : User manual

List of programming primitives

MOVV
Copies a constant or a variable into a variable.

Parameters:
- destination variable,
- source variable or constant.

ADDV

Adds a constant or variable to a constant or variable and places the
result in a variable.

Parameters:
- destination variable,
- source 1 variable or constant,
- source 2 variable or constant.

SUBV

Subtracts a constant or variable from a constant or variable and places
the result in a variable.

Parameters:
- destination variable,
- source 1 variable or constant,
- source 2 variable or constant.

MULV

Multiplies a constant or variable by a constant or variable and places the
result in a variable.

Parameters:
- destination variable,
- source 1 variable or constant,
- source 2 variable or constant.

autoSIMP 173 ©Copyright 2011 SMC

O

Sl v IC : User manual

DIVV

Divides a constant or variable by a constant or variable and places the
result in a variable.

Parameters:
- destination variable,
- source 1 variable or constant,
- source 2 variable or constant.

ORRV

Carries out a bit-by-bit OR between a constant or variable and a constant
or variable and places the result in a variable.

Parameters:
- destination variable,
- source 1 variable or constant,
- source 2 variable or constant.

ANDV

Carries out a bit-by-bit AND between a constant or variable and a
constant or variable and places the result in a variable.

Parameters:
- destination variable,
- source 1 variable or constant,
- source 2 variable or constant.

XORV

Carries out a bit-by-bit exclusive OR between a constant or variable and
a constant or variable and places the result in a variable.

Parameters:
- destination variable,
- source 1 variable or constant,
- source 2 variable or constant.

autoSIMP 174 ©Copyright 2011 SMC

ZS\NC

User manual

JUMP

Unconditional jump.

Parameter:
- label.

JPIF
Conditional jump.

Parameters:
- label,
- element 1,

- type of comparison,

- element 2.

Connections

Makes it possible to create the object’s connection points. By clicking on
“Insert”, the following dialogue box is opened:

x

Harizontal position
0l E
Wertical positioh
|III 32

Technaology

I Prieumatic

Cancel |

[
Ok I

For each connection, define the position and the technology. The
number shown against each connection must be used to access the
value in the object’s programming.

autoSIM®

175

©Copyright 2011 SMC

% SNC

User manual

The “Examples\SIMULA” sub-directory of the AUTOSIM installation

directory contains an example illustrating use of the user-definable
object: a contact:

autoSIMP 176 ©Copyright 2011 SMC

O

SVC/ User manual

Common elements

This chapter describes the common elements for all the languages
used in AUTOSIM.

Variables
The following types of variables are present:
= boolean type: the variable may have a true (1) or false (0) value.

= numeric type: the variable may have a numeric value, different from the
existing types: 16 bits variables, 32 bits and floating point.

= time delay type: structured type, it is a combination of a boolean and numeric
type.

Starting from version 6 the variable name syntax may be AUTOSIM's or the

syntax of IEC standard 1131-3.

Booleen variables

The following table provides a complete list of the Booleen variables
used

Type Syntax Syntax Comments
AUTOSIM IEC 1131-3
Input 10 %I0 May or may not correspond to physical input
to 19999 to %19999 (depending on the I/O configuration of the
target).
Output oo %Q0 May or may not correspond to physical output
to 09999 to %Q9999 (depending on the I/O configuration of the
target).
System Bits | U0 %MO For information on the system bits see the
to U99 to %M99 manual on the environment.
User bits U100 %M100 Internal bits for general use.
to U9999 to %M9999

Grafcet X0 %X0 Grafcet step bits
Steps to X9999 t0 %X9999
Word bits MO#0 %MWO0:X0 Word bits: the number of bits is

to M9999#15 a %MW9999:X15 |expressed in decimals and s
included between 0 (lower weight
bits) and 15 (higher weight bits).

autoSIMP 177 ©Copyright 2011 SMC

O

SMC

User manual

Numeric variables
The following table provides a complete list of the numeric variables.

Type Syntax IEC Syntax Comments
AUTOSIM 1131-3
Counter Co %C0 16 bit counter, can be initialized,
to C9999 to %C9999 increased, decreased and tested with
boolean languages without using
literal language.
System MO %MWO For information on the system words
Words to M199 to %MW 199 see the manual on the environment.
User words | M200 %MW200 16 bit words for general use.
to M9999 to %MW9999
Long L100 %MD100 Integer value of 32 bits
integer to L4998 to %MD4998
Float F100 %MF100 Real value of 32 bits (format IEEE).
to F4998 to %MF4998
Time delay

Time delay is a combined type which groups two boolean variables
(launch state, end state) and two numeric variables on 32 bits

(procedure and counter).

autoSIM®

178

©Copyright 2011 SMC

O

SVC/ User manual

The following model shows a time chart of time delay functionality:

launch state

end state

count value

A time delay procedure value is between 0 ms and 4294967295 ms (a
little over 49 days)

The time delay procedure can be modified by the program (instruction

STA).
The time delay counter can be read by the program (instruction LDA).

autoSIMP 179 ©Copyright 2011 SMC

O

SMC

User manual

Actions are used in:

= Grafcet language action rectangles,

| |
T

= flow chart language action rectangles,

. | 1
— ' & | 1_a |

|

—||—

=> ladder language coils.

— zT]—

L

Assignment of a boolean variable

The « Assignment » action syntax is:
«boolean variable»
Operation:

= if the action rectangle or coil command is in a true state then the variable is put
at 1 (true state),

= if the action rectangle or coil command is in a false state then the variable is
put at 1 (false state).

Truth table:
Command | Variable state (result)
0 0
1 1

Example:

|lé [{o |

If step 10 is active then OO0 takes the value of 1, if not OO0 takes the

value 0.

autoSIM®

180

©Copyright 2011 SMC

P
-“//I-SVD User manual

Various « Assignment » actions can be used for the same variable in
one program. In this case, the different commands are combined in
« Or » logic.

Example:
[18 |{os | [5a |{o=

State of X10 | State of |State of
X50 05

0 0 0

1 0 1

0 1 1

1 1 1

Complement assignment of a boolean variable

The « Complement assignment » action syntax is:
«N boolean variable»
Operation:

= if the action rectangle or coil command is in a true state then the variable is
reset (false state),

= if the action rectangle or coil command is in a false state then the variable is
set at 1 (true state).

Truth table:
Command | Variable state (result)
0 1
1 0

Example:

|Eé [{Hu1EE |

If step 20 is active, then U100 takes the value 0, if not U100 takes the
value 1.

autoSIMP 181 ©Copyright 2011 SMC

o
‘—‘//I—-SVD User manual

Various « Complement assignment » actions can be used for the
same variable in one program. In this case, the different commands
are combined in « Or » logic.

Example: |
|1?a [{Hoza | |1}a [{Hoza |
State of | State of X110 | State ~ of
X100 020
0 0 1
1 0 0
0 1 0
1 1 0

Setting a boolean variable to one

The « Set to one » syntax is:
«S boolean variable»
Operation:

= if the action rectangle or coil command is in a true state then the variable is set

to 1 (true state),

= if the action rectangle or coil command is in a false state then the state of the
variable is not modified.

Truth table:
Command | Variable state (result)
0 unchanged
1 1

Example:

|séaa|1sn2 |

If step 5000 is active then O2 takes the value of 1, if not O2 keeps the
same state.

autoSIMP 182 ©Copyright 2011 SMC

O

gvc* User manual

Resetting a boolean variable

The « Reset» action syntax is:
«R boolean variable»
Operation:

=> if the action rectangle or coil command is in a true state then the variable is

reset (false state),

= if the action rectangle or coil command is in a false state then the variable state

is not modified.

Truth table:
Command | Variable state (result)
0 unchanged
1 0

Example:

|séaa|-|ﬂn3 |

If step 6000 is active then O3 takes the value of 0, if not O3 keeps the
same state.

Inverting a boolean variable

The « Inversion » action syntax is:
«| boolean variable»
Operation:

= if the action rectangle or coil command is in a true state then the variable state
is inverted for each execution cycle,

= if the action rectangle or coil command is in a false state then variable state is
not modified.

autoSIM® 183 ©Copyright 2011 SMC

O

SVD* User manual

Truth table:
Command | Variable state (result)
0 unchanged
1 inverted

Example:

[Foaa] {104 |

If step 7000 is active then the state of O4 is inverted, if not O4 keeps
the same state.

Resetting a counter, a word or a long

The « Reset a counter, word or long» syntax is:
«R counter or word»
Operation:

= if the action rectangle or coil command is in a true state then the counter, word

or long is reset,

= if the action rectangle or coil command is in a false state then the counter, word
or long is not modified.

Truth table:
Command | Value of counter, word or long
(result)
0 unchanged
1 0
Example:
[188 |{RCzE |

If step 100 is active then counter 25 is reset, if not C25 keeps the
same value.

autoSIMP 184 ©Copyright 2011 SMC

O

SVD- User manual

Incrementing a counter, a word or a long

The «Increment a counter » action syntax is:
«+ counter, word or long»
Operation:

= if the action rectangle or coil command is in a true state then the counter, word

or long is incremented for each execution cycle,

= if the action rectangle or coil command is in a false state then the counter, word
or long is not modified.

Truth table:
Command |Counter, word or long
value (result)
0 Unchanged
1 current value +1
Example:
[109 |{+czs |

If step 100 is active then counter 25 is incremented, if not then C25
keeps the same value.

Decrementing a counter, word or long

The « Decrement a counter » action syntax is:
«- counter, word or long»
Operation:

= if the action rectangle or coil command is in a true state then the counter, word
or long is decremented for each execution cycle,

= if the action rectangle or coil command is in a false state then the counter, word
or long is not modified..

Truth table:
Command | Value or counter, word or long
(result)
0 unchanged
1 current value -1
Example:
[18 |{-czs |

autoSIM® 185 ©Copyright 2011 SMC

o
‘—‘//I-SVD User manual

If step 100 is active then counter 25 is decreased, if not C25 keeps the
same value.

Time delays
Time delays are considered as boolean variables and can be used
with « Assignment », « Complement assignment », « Set to one »,

« Reset », and « Invert ». The time delay order can be written after the
action. The syntax is::

« time delay(duration) »

By default the duration is expressed in tenths of seconds. The letter
« S » at the end of the duration indicates that it is expressed in
seconds.

Examples:
[18 |{T3i280 | [z6 |{sTEBics) |

Step 10 launches a time delay of 2 seconds which remains active as
long as the step is. Step 20 sets a time delay of 6 seconds which
remains active while step 20 is deactivated.

The same time delay can be used by different places with the same
procedure and at different instants. In this case the time delay
procedure must only be indicated once.

Note: other syntaxes exist for time delays.

Interferences among the actions

Certain types of actions cannot be used at the same time on a
variable. The table below shows the combinations which cannot be
used:

Assignment | Complement | Set to one Reset Inversion
assignment
Assignment YES NO NO NO NO
Complement NO YES NO NO NO
assignment

Set to one NO NO YES YES YES
Reset NO NO YES YES YES
Inversion NO NO YES YES YES

autoSIM® 186 ©Copyright 2011 SMC

% SNC

User manual

I[EC1131-3 standard actions

The table below provides the IEC 1131-3 standard actions which can
be used with AUTOSIM V>=6 based on the AUTOSIM. V5 standard

syntax.
Name AUTOSIM | AUTOSIM V5 | AUTOSIM Equivalent

V>=6 Syntax V>=6 example

Syntax Example AL/TOSIM V5
Not No value [Novalue |[1z_]{os || [1e_|{om |
memorized
Not N1 No value |[1e_|{wwos | [18 [{os |
memorized
Complement |NO N [{vece]| [to|{roe
not
memorized

R R |1é |{ro@ ||1EI1 | {ro@
Reset
Set to 1 S S o J{soe || 12]{soq
Limited in LTn/durati |Non- [0 reresoa]| e
time on existent 12 |{ee {recies
Time delay DTn/durat | Non- [0 |{orestesoe || e

ion existent 12 |{e Hrecies |
Pulse on P1 Non- |1§ | [Fieca |w e |
rising edge existent
Pulse on PO Non- (1o roren]} e e

. existent :

falling edge
Memorized |SDTn/dur |Non- (15 {so7e tesoa]| e e]
and time ation existent e e]
delay
Time delay [DSTn/dur [Non- [12_{ostetesoa]| o
and ation existent 10 l{revies) oo |
memorized
Memorized |SLTn/dur |Non- [1o_[{sire 1ms00) T T —=mme
limited in time |ation existent
autoSIM 187 ©Copyright 2011 SMC

’-
@SVC User manual

Multiple actions

Within the same action rectangle or coil, multiple actions can be
written by separating them with « ; » (comma).

Example:

|5? |{o@.Ho1, 502, RO3, RCB, +C1, —C2 |

Multiple action rectangles (Grafcet and flow chart) or coils (ladder) can

be combined. See the chapters on the relative languages for more
information.

Literal code

Literal code can be entered in an action rectangle or coil.
The syntax is:
« { literal code } »

Multiple lines of literal language can be written in braces. A «, »
(comma) is also used here to separate them.

Example:
[16 |{trzeo=rHzoe+1a13 |

For more information see the chapters « Low level literal language »,
«Extended literal language » and «ST literal language».

Tests are used in:

= Grafcet language transitions,

? ;

=> conditions based on Grafcet language action,

:

| ' - IF(1

autoSIMP 188 ©Copyright 2011 SMC

O

SVD, User manual

= flow chart language tests,

l

= ladder language tests.

;

i I (| —

—||—

General form

A test is a boolean equation composed of one or n variables separated
by the operators « + » (or) or « . » (and).

Example of a test:

i0 (test input 0)
i0+1i2 (test input 0 « or » input 2)

110.i11 (test input 10 « and » input 11)

Test modifier

By default if only the name of one variable is specified, the test is
« equal to one» (true). Modifiers make it possible to test the
complement state, the rising edge and the falling edge.

= the character « / » placed before a variable tests the complement state,

&> the character « u » or the character « A\ » placed before a variable tests the

rising edge

= the character « d » or the character « ¥ » placed before a variable tests the
falling edge

Text modifiers can be applied to one variable or to an expression
between parentheses.

Examples:

A i0

/il

/(i2+i3)

WV (i2+(i4./i5))

" To obtain this character when editing a test press the [A] key.

" To obtain this character when editing a test press the [W] key.

autoSIM® 189 ©Copyright 2011 SMC

o
‘—‘//I-SVD User manual

Time delays

Four syntaxes are available for time delays.
In the first the time delay is activated in the action and the time delay is

simply mentioned in a test to check the end state:
|Eé [{T1m055) |

ti@

For the others, everything is written in the test. The general form is:

« time delay /launch variable / duration »

or

« duration / launch variable / time delay »

or

« duration / launch variable »

In this case, a time delay is automatically attributed. The attribution
range is that of the automatic symbols.

By default the duration is expressed in tenths of seconds.

The duration can be expressed in days, hours, minutes, seconds,
milliseconds with the operators «d », «h», « m», «s» and « ms ».
For example: 1d30s = 1 day and 30 seconds.

Example using the second syntax:

t18-128-5=

Example using the normalized syntax:

1h26ms 18

Priority of boolean operators

By default the boolean operator «. » (AND) has a greater priority than
the operator «+» (OR). Parentheses can be used to set a different
priority.

Examples:
1i0.(1i1+i2)

((10+1i1) .12)+i5

Always true test

The syntax of an always true test is:
« » (no value) or « =1 »

Numeric variable test
Numeric variable tests must use the following syntax:

autoSIM® 190 ©Copyright 2011 SMC

% SNC

User manual

« numeric variable » « test type » « constant or numeric variable »

The test type can be:
E:><<=>>equa|,

= « | » or « <> » different,

= « < » less than (not signed),
= « > » greater than (not signed),
= « << » less than (signed),

= « >> » greater than (signed),

= « <= » less than or equal to (not signed),

D « >=» greater than or equal to (not signed),

= « <<= » less than or equal to (signed),

B « >>= » greater than or equal to (signed).

A float can only appear with another float or a real constant.
A long can only appear with another long or a long constant.
A word or a counter can only appear with a word, a counter or a 16 bit

constant.

Real constants must be followed by the letter « R ».

Long constants (32 bits) must be followed by the letter « L ».
16 or 32 bit integer constants are written in decimal by default. They
can be written in hexadecimal (suffix « $» or « 16# ») or in binary

(SUFfiX « % » OF « 2# »).

Numeric variable tests are used in equations like boolean variable
tests. They can be used with test modifiers as long as they are in

parentheses.

Examples:
m200=100

$mwl000=16#abcd
cl10>20.c10<100
£200=£201
m200=m203
$md100=%md102
£200=3.14r
1200=512345678L
m200<<-100
m200>>1000
Smw500<=12

autoSIMP 191

©Copyright 2011 SMC

O

SVC‘ User manual

/ (m200=4)

WV (m200=100)
/(1200=100000+1200=-100000)

Transitions on multiple lines

Transition text can be extended to multiple lines. The end of a
transition line must be an operator « . » or « + ». A combination of key
[CTRL] + [¥] and [CTRL] + [f\] makes it possible to move the cursor
from one line to another.

Use of symbols

Symbols make it possible to associate a text to a variable.
Symbols can be used with all the languages.
A symbol must be associated to one and only one variable.

Symbol syntax
The symbols are composed of:
= an optional character « _ » (low dash, generally associated with key [8] on the

keyboard) which indicates the beginning of the symbol,
=> the name of the symbol,

= an optional character « _ » (low dash) which indicates the end of the symbol.

The characters « _ » enclosing the symbol names are optional. They
must be used if the symbol starts with a digit or an operator (+,-,
etc...).

Automatic symbols

It can be a nuisance to have to set the attribution in each symbol and a
variable, particularly if the precise attribution of a variable number is
not very important. Automatic symbols are a solution to this problem,
they are used to let the compiler automatically generate the attribution
of a symbol to a variable number. The type of variable to use is
provided in the name of the symbol.

Automatic symbol syntax
The syntax of automatic symbols is as follows:

« symbol name » %« variable type »

« variable type » can be:
l,0o0rQ,UorM, T,C,Mor MW, L or MD, F or MF.

It is possible to reserve multiple variables for a symbol. This is useful
for setting tables. In this case the syntax is:

« symbol name » %« variable »« length »

autoSIMP 192 ©Copyright 2011 SMC

P
‘—‘//I—-SVD User manual

«length » represents the number of variables to be reserved.

How does the compiler manage the automatic symbols ?

When starting to compile an application, the compiler cancels all the
automatic symbols located in the « .SYM » file of the application. Each
time the compiler finds an automatic symbol it creates a unique
attribution for the symbol based of the variable type specified in the
symbol name. The symbol that is then generated is written in the
« .SYM » file. If the same automatic symbol is present more than once
in an application, it refers to the same variable.

Range of variable attribution

By default, an attribution range is set for each type of variable:
Type Start |End

| or %l 0 9999
OQor%Q |0 9999
Uor%M [100 [9999
Tor%T |0 9999
Cor%C |0 9999
M or 200 9999
%MW
L or %MD [100 [4998
For %MF [100 [4998

The attribution range can be changed for each type of variable by
using the compilation command #SR« type »=« start », « end »

« type » designates the type of variable, start and end and the new
limits to be used.

This command modifies the attribution of automatic variables for the
entire sheet where it is written and up to the next « #SR » command.

Fixed-address symbols
The syntax of the automatic symbols is:

« symbol name » $« variable name »

For example:

open valve%$%g3

Designates a symbol that will be linked to the variable %Q3.

autoSIM® 193 ©Copyright 2011 SMC

P
‘—@SVC User manual

Examples

To better illustrate this manual we have developed some functional
examples with a model of a train as in the diagram below
b MAQUETTE AT-850 o

©

. @
.
—7 &
= M-
i g
O i
_ S5D i)
I T5D T
S5l Dq rD
I ..g
S4A =%,
A 9 T4A SE'J
- voie 6 voie 5 =
? S P =T =
; 28 oy s R
%m 2B R ———— | T4B Eg
A= Q =X
sl S7D S8I S8D g
O = &) D T8I TSD o=
HIT T7I < voie 3 > i
1_|3: « L E
L (o) >
]E-l | —
e = s
11 AE | [pllEElei,
% S i AN
1 31 = S3D & |
© b ‘\.l) s =)

We have used I/O cards on a PC to pilot this model. The symbols set by the

constructor of the model have been saved.

autoSIM® 194 ©Copyright 2011 SMC

r
_“//;SVC User manual

The following symbol file was created:

AV1 00 alimentation voie 1

AV2 o1 alimentation voie 2

AV3 o2 alimentation voie 3

Av4 03 alimentation voie 4

AvVH o4 alimentation voie 5

AVE 05 alimentation voie 6

AVT 8]3] alimentation voie 7

AVE o7 alimentation voie 8

AP1 o8 alimentation plateforme 1
AP2 Q9 alimentation plateforme 2
AP3 010 alimentation plateforme 3
AP4 O11 alimentation plateforme 4
AP5 012 alimentation plateforme 5
IP1 013 rotation plateforme 1

P2 014 rotation plateforme 2

IP3 015 rotation plateforme 3

P4 016 rotation plateforme 4

1P5 017 rotation plateforme 5
ZP1 018 initialisation plateforme 1
ZP2 019 initialisation plateforme 2
ZP3 020 initialisation plateforme 3
ZP4 021 initialisation plateforme 4
ZP5 022 initialisation plateforme 5
Dv1 023 direction voie 1

Dv2 024 direction voie 2

Dv3 025 direction voie 3

Dv4 026 direction voie 4

Dv5 027 direction voie 5

DvE 028 direction voie 6

Dv7 29 direction voie 7

Dv8 030 direction voie 8

S1D 031 feu droit voie 1

Sl 032 feu gauche voie 1

S2A 033 feu haut voie 2

SZ2B O34 feu bas voie 2

S3D 035 feu droit voie 3

S3l 036 feu gauche voie 3

S4A 037 feu haut voie 4

S4B 038 feu bas voie 4

S5D 039 feu droit voie 5

S5l 040 feu gauche voie 5

S6D 041 feu droit voie &

58l 042 feu gauche voie 6

S7D 043 feu droit voie 7

S7l 044 feu gauche voie 7

S8D 045 feu droit voie 8

S8l 046 feu gauche voie 8

T1D i0 train droit voie 1

T1I i1 train gauche voie 1

T2A i2 train haut voie 2

T2B i3 train bas voie 2

T3D i4 train droit voie 3

T3l i5 train gauche voie 3

T4A i6 train haut voie 4

T4B i7 train bas voie 4

T5D i8 train droit voie 5

autoSIM® 195 ©Copyright 2011 SMC

N
2

User manual
T5I i9 train gauche voie 5
T6D i10 train droit voie 6
T6l i11 train gauche voie 6
T7D i12 train droit voie 7
T7I i13 train gauche voie 7
T8D i14 train droit voie 8
T8I i15 train gauche voie 8
TP1 i16 train plateforme 1
TP2 i17 train plateforme 2
TP3 i18 train plateforme 3
TP4 i19 train plateforme 4
TPS i20 train plateforme 5
P1F i21 index plateforme 1
P2F i22 index plateforme 2
P3P i23 index plateforme 3
P4P i24 index plateforme 4
P5P i2b index plateforme 5
P1Z i26 init plateforme 1
P2z i27 init plateforme 2
P3Z i28 init plateforme 3
P4z i29 init plateforme 4
P57 i30 init plateforme 5
ERR i31 court-circuit

AUTOSIM supports the following elements:
=> divergences and convergences in « And» and in « Or »,

= destination and source steps,
= destination and source transitions,
= synchronization,

= setting Grafcets,

=> memorization of Grafcets,

= fixing,

= macro-steps.

Simple Grafcet

Grafcet line writing involves combined steps and transitions.

The example below illustrates a Grafcet line:

Conditions:

The locomotive needs to leave on track 1 towards the right, up to the
end of the track. It returns in the opposite direction to the other end
and starts again.

autoSIM® 196 ©Copyright 2011 SMC

o
-“//;SVC User manual

Solution 1:

0 H AVl

—_ tld

1 H avl , DV1

—_1 tli

éxamples\grafcet\simple1 .agn

Solution 2:

0 HS AV1 ,R DV1

Aller

— tld

1 HS AV1 ,S DV1

Retour

-1 tli

example\grafcet\simple2.agn

The difference between the two solutions is that the first example uses
« Assignment » actions and the second uses « Set to one » and
«Reset ».

We change the conditions by setting a delay of 10 seconds when the
locomotive arrives to the right of track 1 and a delay of 4 seconds
when the locomotive arrives to the left of track 1.

autoSIMP 197 ©Copyright 2011 SMC

% SNC

User manual

Solution 1:

Aller

Retour

example\grafcet\simple3.agn

Solution 2:

example\grafcet\simple4.agn

autoSIM®

0 H AV1
e tld
10 HTO(10S)
4 to
20 H AVl , DVl
—— tli
30 HT1(4S)
— t1
0 H AV1
e tld
10
—— 10s/x10
20 H AV1 , DVl
—— tli
30
—— 4s/x30
198

Aller

Retour

©Copyright 2011 SMC

% SNC

The difference between example 3 and 4 is in the choice of syntax
used to set the time delays. In terms of operation the result is identical.

User manual

Divergence and convergence in « And »

Divergences in « And » can have n points. It is important to observe
the use of the function blocks:

L |Mustbe a [K] Must be an [M]
block and not an block and not an
[L] block [L] block

I
Must be a [Q]

L |Must be an [O] block and not a
blOCk and not a [P] block
[P] block

A description of the use of divergences and convergences in « And »
follows.

Conditions:

We are going to use two locomotives: the first makes round trip
journeys on track 1, the second on track 3. The two locomotives are
synchronized (they wait at the end of the track).

autoSIM® 199 ©Copyright 2011 SMC

% SNC

User manual

Solution 1:

—4 =1
0 AV1 50 AV3
—4— tld —— t3i
10 60
P
20 AV1 , DV1 70 AV3 , DV3
— t1li —4— t3d
30 80
—4 =1

example\grafcet\divergence et 1.agn

autoSIM®

200

©Copyright 2011 SMC

% SNC

User manual

Solution 2:

tld

AV1

t31

10

AV3

tld .

t31i

’— tli

’— t3d

20

AVl ,

DV1

30

AV3 ,

DV3

tli

. t3d

example\grafcet\divergence and 2.agn
The two solutions are equivalent in terms of operation. The second is a
more compact version which uses conditioned actions.

Divergence and convergence in « Or »

Divergences in « Or » can have n points. It is important to observe the
use of the function blocks:

or

or

autoSIM®

201

©Copyright 2011 SMC

O

SMC

User manual

Divergences in « Or » must connect on descending links. For example:

-

O -

incorrect, the right drawing is:

T
I|_|I

-

—

]

If the width of the page prevents you from writing a large number of
divergences you can use the following type of structure:

[] [] [] L] [] []

The following is an example to illustrate the use of divergences and
convergences in « Or »:

Conditions:

Let's look at the conditions for the first example in the chapter:
roundtrip of a locomotive on track 1.

autoSIMP 202 ©Copyright 2011 SMC

N
2

User manual
Solution:
0 H AV1
—+ A tild —-I— MNtli
1 HS DV1 2 HR DV1

example\grafcet\divergence or.agn

This Grafcet could be restated in a step using conditioned actions as in
this example:

’—/p tld ’—/p tli

0 H AV1 —4S DVl —4R DV1

example\grafcet\conditional action.agn

Destination and source steps, destination and source transitions

The principles are illustrated in the examples below:

Conditions:

Let's look at the second example in this chapter: round trip of a
locomotive on track 1 with a delay at the end of the track.

Solution:

autoSIM® 203 ©Copyright 2011 SMC

N
2

User manual

0 s AVl

T
—+ A tild - MNtli
10 Hr avi 30 HR avl
—— t0/x10/10s —— t1/x30/4s
20 Hs avi 4s pv1 40 Hs avi 4r DV1
—4 =1 —4 =1

example\grafcet\destination and source steps.agn

Multiple actions, conditioned actions

We have already used multiple and conditioned actions in this chapter.
The two principles are described in detail below.

As described in the chapter dedicated to the compiler, multiple actions
can be written in the same rectangle, by entering the character « , »
(comma) as a separator.

When a condition is added to an action rectangle, all of the actions
which continue in the rectangle are conditioned.

Multiple actions rectangles can be associated to a step.

C W R R R |

another possibility:

C 1 R 1 R |
— i 1 R |
— i 1 R |
— i 1 R |

Each of the rectangles can receive a different condition:

autoSIMP 204 ©Copyright 2011 SMC

N
2

User manual

[[[[

L] i § § |
[[[[

— i § § |
[[[[

—] § k § |
[[[[

— i § § |

Conditional actions, event-based actions

To design a conditional or event-based action, place the cursor over
the action rectangle, right-click with the mouse and select “Conditional
action” or event-based action from the menu. To document the
condition on action, click on the element Cor or .

The IF (condition) syntax allows a condition on action to be written in
the action rectangle.
For example:

EI Hs%05 IF (%I4)

Actions on activation or deactivation of a step

v
The 4

and symbols make it possible to specify that the
actions contained in a rectangle have to be performed once at the

activition or deactivation of the step respectively. For example:

20 H+ %C5

Increment counter 5 once at the activation of step 20.

Actions on transition crossing

The N

and symbols make it possible to define actions on
transition crossing. For example:

autoSIM® 205 ©Copyright 2011 SMC

N
2

User manual

— %$i0

%$00:=1

20

%QO0 will be activated on crossing the transition between steps 10 and
20.

Synchronization

Let's return to a previous example to illustrate Grafcets
synchronization.

Conditions:

Round trip of two locomotives on tracks 1 and 3 with a delay at the end
of the track.

This example was used with a divergence in « And ».

Solution 1:
10 |H avi 100 |H av3
—+— tid —— t3i
20 110
—+4— x110 —1— x20
30 H avi , DV1 120 H av3 , DV3
I t1i — t3d
40 130
—— x130 —1— x40

example\grafcet\synchro1.agn

autoSIM® 206 ©Copyright 2011 SMC

o
"-//;SVC User manual

Solution 2:

HSX100,SX140

—+ =1

—1— x110.x150

30 HSX120,5X160
-1 =1
40
—1— x130.x170
100 H Aavl 120 H AVl , DV1 140 H AvV3 160 H AV3 , DV3
-1 tld — tl — t3 — t3d
110 130 150 170
—1— x30 —1— x10 —1— x30 —1— x10

example\grafcet\synchro2.agn

The second is an excellent example of how to complicate the simplest
things for teaching purposes.

Grafcet setting

The compiler regroups the steps based on the links established within
them. To draw a Grafcet, just refer to one of the steps making up that
Grafcet.

It is also possible to draw all of the Grafcets present on a sheet by
mentioning the name of the sheet.

autoSIMP 207 ©Copyright 2011 SMC

o
‘—‘//I—-SVD User manual

For example:

266

T

|®|ﬂ|

To draw a Grafcet we use Grafcet 200, Grafcet 201 or Grafcet 202.
Thus the Grafcet of all the steps becomes a structured type variable.
made up of n steps, each of these steps, being either active or idle.

As we have seen, AUTOSIM divides the steps into independent
groups. These groups can be regrouped, making it possible to
consider them as a single Grafcet. To regroup multiple Grafcets, the
compilation command « #G:g1,g2 » (command to be included in a
comment) must be used. This command regroups the Grafcets g1 and
g2. Remember that the designation of a Grafcet is affected by
mentioning the number of one of its steps.

Here is an example:

#G:105,200

this compilation command regroups the two Grafcets:

168 =58
][]
1 1E|

Note:multiple « #G » commands can be used to regroup more than
two Grafcets.

We are now going to describe the useable setting orders. They are
simply written inside the action rectangles as normal assignments.
They also support the operator S(set to one), R(reset), N(complement
assignment) and I(Inversion) as well as conditional actions.

Grafcet setting according to a list of active steps

Syntax:

« F<Grafcet>:{<list of active steps>} »

or

« F/<sheet name>:{<list of active steps>} »

autoSIM® 208 ©Copyright 2011 SMC

o
‘—‘//I—-SVD User manual

The Grafcet/s thus designated will be set to the state established for
the list of active steps if they are within braces. If multiple steps need
to be active they need to be separated with a «, » (comma). If the
Grafcet/s need to be set to an idle state (not active step) then no step
should be present within the braces.

The number of steps may be preceded by an « X ». It is also possible
to associate a symbol to the name of a step.

Examples:

« F10:{0} »

set all the steps of Grafcet 10 to 0 except step 0 which will be set to 1.
« F0:{4,8,9,15} »

sets all the steps of Grafcet 0 to 0 except steps 4,8,9 and 15 which will
be setto 1.

« F/normal run:{} »

sets all the Grafcets on the « normal run » sheet to an idle state.

Memorization of a Grafcet state

Current state of a Grafcet:

Syntax:

« G<Grafcet>:<bit N°> »

or

« G/<sheet name>:<bit N°> »

This command memorizes the state of one or more Grafcets in a
series of bits. It is necessary to reserve a storage space for the state of
the Grafcet/s (one bit per step). These storage bits must be
consecutive. You must use the #B command to reserve a linear bit
space.

The step number designating the Grafcet can be preceded by an «
X » . It is also possible to associate a symbol to a step name. The bit
number can be preceded by «U» or «B». A symbol can be
associated to the first bit of the state storage area.

Particular Grafcet state:

Syntax:

« G<Grafcet>:<Bit N°> {list of active steps} »
or

« G/<sheet name>:<Bit N°> {list of active steps} »

This command memorizes the state set for the list of active steps
applied to the specified Grafcets starting with the indicated bit. Also
here it is necessary to reserve a sufficient number of bits. If an idle
situation needs to be memorized then no steps should appear
between the braces.

autoSIM® 209 ©Copyright 2011 SMC

P
‘—‘//I—-SVD User manual

The step number can be preceded by an « X » . |t is also possible to
associate a symbol to a step name. The bit number can be preceded
by « U» or « B ». A symbol can be associated to the first bit of the
state storage area.

Examples:

« G0:100 »

memorizes the current state of Grafcet 0 starting from U100.

« G0:U200 »

memorizes the idle state of Grafcet 0 starting from U200.

« G10:150{1,2} »

memorizes the state of Grafcet 10, in which only steps 1 and 2 are
active, starting from U150.

« G/PRODUCTION:_SAVE PRODUCTION STATE_ »

memorizes the state of the Grafcets on the « PRODUCTION »
spreadsheet in the. SAVE PRODUCTION STATE_ variable.

Setting a Grafcet from a memorized state

Syntax:

« F<Grafcet>:<Bit N°> »

or

« F/<sheet name>:<Bit N°> »

Sets the Grafcet/s with a memorized state to start from the specified
bit.

The step number designated by the Grafcet can be preceded by an «
X » . It is also possible to associate a symbol to a step name. The bit
number can be preceded by «U» or «B». A symbol can be
associated to the first bit of the state storage area.

Example:

« G0:100 »

memorizes the current state of Grafcet 0

« F0:100 »

and resets that state

Fixing a Grafcet

Syntax:

« F<Grafcet> »

or

« F/<sheet name> »

Fixes a Grafcet/s: no evolution of these is permitted.
Example:

<« F1OO »

fixes Grafcet 100

autoSIMP 210 ©Copyright 2011 SMC

P
-‘-//;SVC User manual

« F/production »
fixes the Grafcets on the « production » sheet
An illustration of setting is shown in the example below.

Conditions:

Let's look at a previous example: the round trip of two locomotives on
tracks 1 and 3 (this time with no delay between the locomotives) and
let's add an emergency stop. When the emergency stop is detected all
the outputs are cleared. When the emergency stop disappears the
program should start where it stopped.

autoSIMP 211 ©Copyright 2011 SMC

P
-“//;SVC User manual

Solution 1:
#B104 réserve 4 bits pour la mémorisation de 1l'état des Grafcet:
locomotive 1 locomotive 2
10 H AV1 30 H AV3
. tld —_ t3i
20 H Avl , DV1 40 H AV3 , DV3
. tli —_ t3d

gestion de l'arrét d'urgence

1000

— arret urgence

1010 HG10:100,G30:102

1020 HF10:{},F30:{}

o arret urgence

1030

F10:100,F30:102

example\grafcet\force1.agn
Note the use of command #B104 which makes it possible to reserve

four consecutive bits (U100 to U103) to memorize the state of the two
Grafcets. « _emergency stop_ » was associated to a bit (U1000). Its

autoSIMP 212 ©Copyright 2011 SMC

P
-‘-//;SVC User manual

state can thus be modified starting from the environment by clicking
below when the dynamic display is active.

Solution 2:
#B104 réserve 4 bits pour la mémorisation de 1'état des Grafcet:
locomotive 1 locomotive 2

10 H AV1 30 H AV3
_ tld _ t3i
20 H AVl , DV1 40 H AV3 , DV3
—_ tli —_ t3d

#G:10, 30

gestion de l'arrét d'urgence

1000

o arret urgence

1010 HG10:100

—_ =1

1020 HF10:{}

— arret urgence
1030 HF10:100

—_ =1

example\grafcet\force2.agn

autoSIMP 213 ©Copyright 2011 SMC

O

SVD, User manual

This second solution shows the use of the compilation command
« #G » which makes it possible to regroup the Grafcets with setting
command.

Grafcet forcings (60848 standard)

This standard defines the forcing orders in double action rectangles.
Forcing actions are executed when the associated condition, step or
logical diagram, is true. Conditions can be added on the double action
rectangles: condition on action, event-based action, action on
activation or deactivation.

Forcing a Grafcet according to a list of active steps

The syntax is:

G<grafcet to be forced>{<list of steps to be forced when true>}

The step(s) included in the list are forced to true, the other to false. An
empty list of steps causes all the steps to be forced to false.

Example:

—|G10{20,30} |

Here 10 represents the Grafcet to be forced: Grafcet containing step
10.
Another example:

—|Gfolio 3 forcer{100,200,300} |

Force all of the Grafcets on the sheet named “sheet to be forced”, with
steps 100, 200 and 300 being set to true and the others set to 0.

Forcing a Grafcet to its initial state

The syntax is:

G<grafcet to be forced>{INIT}

The Grafcet(s) are forced to their initial state
Example:

—|G10{INIT} |

Freezing a Grafcet
The syntax is:
G<grafcet to freeze>{*}
Example:

—|G10(*} |

autoSIMP 214 ©Copyright 2011 SMC

o
‘—‘//I—-SVD User manual

Macro-steps

AUTOSIM implements macro-steps.

Additional information is given below:

A macro-step MS is the single representation of single group of steps
and transitions called « MS expansion».

A macro-step obeys the following rules:

= an MS expansion involves a special step called input step and a special step

called output step.

= the input step has the following property: complete clearing of a transition

upstream from the macro-step, it activates the input step of its expansion.

= the output step has the following property: it is involved in the validation of

transitions downstream from the macro-step.

= if outside the transitions upstream and downstream from the MS, there is no
input structural connection, on one side with a step or transition of the MS
expansion and on the other side, a step or a transition is not part of MS.

The use of a macro-step with AUTOSIM is set as follows:
= the expansion of a macro-step is a Grafcet if it is on a distinct sheet,

= the input step of the macro-step expansion must bear the number 0 or the

reference Exxx, (with xxx = any number),

= the output step of a macro-step expansion must bear the number 9999 or the

reference Sxxx, with xxx = any number,

= aside from these two requirements, a macro-step expansion can be any
Grafcet and as such can contain macro-steps.

0.0.0.1. How can a macro-step be set ?

The symbol E must be used. To obtain this symbol, click on an
empty space on the sheet and select « Add .../Macro-step » from the
menu. To open the menu click on the bottom of the sheet with the right
side of the mouse.

To set a macro-step expansion, create a sheet, designate the
expansion and assign the sheet properties (by clicking with the right
side of the mouse on the name of the sheet in the browser). Record
the type of sheet on «Macro-step expansion » and the number of the
macro-step.

autoSIMP 215 ©Copyright 2011 SMC

P
-“//;SVC User manual

In run mode it is possible to display a macro-step expansion. To do so
place the cursor on the macro-step and click on the left side of the
mouse.

Notes:
= user steps and bits used in a macro-step expansion are local, this means that

they have no connection with the steps and bits of other Grafcets. All the other
types of variables do not have this characteristic: they are common for all

levels.

= if an area of bits needs to be used in an overall method it is necessary to state

this using the command « #B ».

=> assignment of non-local variables for different levels or different expansions is
not managed by the system. In other words, it is necessary to use the
assignments « S » « R » or « | » to ensure that the system operates correctly..

Let's use one of our previous examples to illustrate the use of macro-
steps: a round trip voyage of a train on track 1 with a delay at the end
of the track. We have broken down the legs of the trip into two
separate macro-steps.

autoSIMP 216 ©Copyright 2011 SMC

r
@SVC User manual

macro—-étape aller voie 1
1

El

10 s avl ,R DV1

—_ tld

20 HR AV1

—— t0/x20/10s

macro—-étape retour voie 1
1

E2

[
o
1

S AV1 ,S DVl

20 R AV1

—— tl1/x20/4s

autoSIMP 217 ©Copyright 2011 SMC

N
2

User manual

example\grafcet\macro steps.agn

Encapsulating steps

Introduced in standard 60848, encapsulating steps are an evolution of
the ideas proposed in macro-steps.

Using encapsulating steps under AUTOSIM is defined as follows:
=> the encapsulation is located in a separate sheet.

How do you define an encapsulating step?

»

The = or ~ symbol have to be used. To place this symbol,
right-click with the mouse on an empty part of the sheet and select
“Plus.../Encapsulating step” in the contextual menu.

How do you define an encapsulation?

To define the encapsulation, create a sheet, design the encapsulation
and modify the properties of the sheet (by right-clicking with the mouse
on the name of the sheet in the browser). Set the sheet type to
“Encapsulation” as well as the encapsulating step number.

X
The symbol allows the initial state to be defined for an

encapsulation.

autoSIMP 218 ©Copyright 2011 SMC

% SNC

An encapsulation can be viewed in execution mode. To do this, you

need to place the cursor over the encapsulating step and left-click with
the mouse.

User manual

Notes:

= The User bits and steps used in an encapsulation are local, i.e. they are not
related to the bits and steps of other Grafcet levels. This is not the case for all
the other types of variable: they are common to all the levels. You can, for
example, use word bits as global variables.

= The encapsulated steps can be embedded.

= The Xn/Xm or %Xn/%Xm syntax allows you to reference step m contained in
the encapsulation associated to step n.

Example :

main program

Folder properties

M ame

Size [the dimensionz of the folder surface]

I>¢<L [wery large folders] j
—Literal language———— [~ Faolder type
& |[EC1131-3 i~ Mormal [hzk
" AUTOMGEM i~ Macio-step expanzion
™ Function block
—Warablesnames— | Task
% Encapsulation |1
¢ IEC1131-3 :

autoSIMP 219 ©Copyright 2011 SMC

N
2

User manual
0 HoO
o ilo
10 Hol
—_ ill
20 Ho2
X
—_ il2

examples\grafcet\encapsulation 2.agn

Grafcet / Ladder and Grafcet / Flow chars links

Links can be defined with Grafcet step variables:

D ’—<%x1 ———{%i2 |———— %05 >—‘

—1— %io0

—_| %il

autoSIMP 220 ©Copyright 2011 SMC

O

SVC/ User manual

GRAFCET++: the block can be used to wire a transition like a
ladder circuit. The Grafcet steps can be wired as the start of a contact.

Grafcet / ladder example:

EI - 1 si2 %00 —

10 |— | %i3 —— %01 D>——

L 1s%i1 _ —

examples\grafcet\grafcet++2.agn

Grafcet / flow chart example:

—— clignotant 05secon d —
— dey il
— t | — [] & D ouvrir vanne
—— niveau haut |—§ ——| niveau sécuri t —

examples\grafcet\grafcet++.agn

Counters

We are going to use an example to describe the use of counters.
Conditions:

A locomotive must make 10 round trip journeys on track 1, stop for
fifteen seconds and start again.

autoSIMP 221 ©Copyright 2011 SMC

o
@SVC User manual

Solution:

0 HRCO

—4 =1

1 H avi

—— tid

2 H AVl , DV1

—4 t1li

3 H+CO

—— c0<10 —— c¢0=10

4
—— 15s/x4

Example\grafcet\compteur.agn

Gemma

AUTOSIM implements the Grafcet description of run mode
management in a Gemma form. The main feature is an editing method
open to the Grafcet mode. It is possible to go from the Grafcet editing
mode to the Gemma editing mode. The translation of a Gemma into a
Grafcet run mode management is therefore automatic and immediate..

autoSIM® 202 ©Copyright 2011 SMC

User manual

P.C. HORS
ENERGIE

%

e P.O. dans état initial>
ovi

1 3
ramPne la locomotive O
gauche

(39) <Préparation pour remise en
route aprés deéfaillance>

ien pour finstant

() rche o anet on vue dassurer i scunte
F_GFN_

RAZ du Graf et de production

Arrét dans état initial

At dans Uat nitial

() <Prouction rormaie-
ey

Lancement du Graf cet de productio

VOYANT INIT

A depart cycle

Lancement du Grafcet de productio

'd' AUTOMGEN

(C)opyright 1997 IRAT

05/03/1994

H DEPART

fin de cycle

Arrét du Grafcet de production

=

£in de cycle obtenu

autoSIMP

223

RAZ du Grafcet de production

F GFN :{}

arret urgence

rien pour 1'instant

il |

-1
raméne la locomotive & gauche

H AV, DVL l

t1i

©Copyright 2011 SMC

SVD- User manual

O

Creating a Gemma
To create gemma proceed as follows:
= click on « Sheet » on the browser with the right side of the mouse and select

the command « Add a new sheet»,
=> from the list of sizes select « Gemma »,
= click on « OK »,

= use the right side of the mouse to click on the sheet name created on the

browser,
= select properties « Proprieties » from the menu,

= check « Display Gemma form ».

The window will contain a Gemma where all the links are gray. To
validate a rectangle or a connection click on it with the right side of the
mouse.

To edit the contents of a rectangle or the type of connection click on it
with the left side of the mouse.

The contents of Gemma rectangles will be placed in the Grafcet action
rectangles. The type of connection will be placed in the Grafcet
transitions.

ontent of Gemma rectangles

Gemma rectangles can receive any action used by Grafcet. Because
this involves setting a structure for managing run and stop modes, it is
a good idea to use the lowest level setting orders for Grafcet, see
chapter jError! No se encuentra el origen de la referencia..

Obtaining a corresponding Grafcet

Check "Display Gemma form" again in sheet properties to call up a
Grafcet representation. It is always possible to call up a Gemma
representation because the Grafcet structure has not been changed.
The transitions, the action rectangle contents and comments can be
edited with automatic updating of Gemma.

Deleting blank spaces in Grafcet

It is possible that the obtained Grafcet occupies more space than
necessary on the page. The command « Change page layout » from
the « Tools » menu makes it possible to eliminate all the unused
spaces.

autoSIMP 224 ©Copyright 2011 SMC

P
-“//;SVC User manual

Printing Gemma

When editing is in Gemma mode use the « Print » command to print
the Gemma.

Exporting Gemma

Use the « Copy to EMF format » in the « Editing » menu to export a
Gemma to a vectorial form.

Example of Gemma

A description of how to use Gemma is below..

Conditions:

Imagine a panel with the following pushbuttons: « start cycle », « end
cycle » and « emergency stop » a light « INIT ».

The main program will consist of a locomotive making round trip journeys
on track 1.

autoSIMP 225 ©Copyright 2011 SMC

O

L User manual

Solution:

P.C. HORS
ENERGIE

<Mss P.O. dans état <Arr5' dans état initial>
AV1, DV1_ _VOYANT INIT_
rambne la locomotive O Art(t dans Utat initial
gauche

®<Prépalation pour remise en
route aprés déf aillances

tien pour finstant
(F1)<Production normale>

DEPART
Lancement du Grafcet de productio

(B3)<Marche ou arrét en vue dassurer la sécurité>
F_GFN_:f}

RAZ du Graf cet de production

P.C. HORS
ENERGIE

autoSIM® 226 ©Copyright 2011 SMC

SVC* User manual

O

Arrét dans état initial
’E]H VOYANT INIT
—— A depart cycle
Lancement du Grafcet de produ ctio
1 H DEPART
RAZ du Grafcet de production
—— fin de cycle 5 HF GFN :{}
Arrét du Grafcet de productio n
2 H FIN — arret urgence
—— fin de cycle obtenu
rien pour 1l'instant
‘ H ‘
J B
raméne la locomotive & gauche
7 H AVl , DV1 ‘
— tli
-1 arret urgence
22 F5:(5)

(editing with Grafcet form)

autoSIMP 227 ©Copyright 2011 SMC

S
2

User manual
— N depart
100 H avi
-+ tld
110 H avi , bpvi1
— tli . fin e tli . fin
120 H FIN DE CYCLE OBTENU

—_ fin de cycle obtenu

example\gemma\gemma.agn

Ladder language, also called contact model, is for graphically
describing boolean equations. To create a logical function « And » it is
necessary to write contacts in series. To write an « Or » function it is
necessary to write contacts in parallel.

— I I —

« And » function

« Or » function

The content of contacts must comply with the syntax established for
the tests which is explained in the «Common elements» chapter of this
manual.

The content of the coils must comply with the syntax established for
the actions which is also explained in the «Common elements »
chapter of this manual.

autoSIM® 228 ©Copyright 2011 SMC

P
-“//I-SVD User manual

Example of Ladder

Let's start with the simplest example.
Conditions:

Round trip of a locomotive on track 1.

Solution 1:
' AVI D>—]
R N R R DV1I D>——
I ANtld } S DVI >— |
Example\ladder\ladder1 .agn
Solution 2:
AV D
4 Ttii pb—— dvl1 | DV1I D>—
1 t1d |

Example\ladder\ladder2.agn

The second solution is identical from an operational point of view. It is
used to display the use of a self-controlled variable.

Let's make our example more complex.

Conditions:

The locomotive must stop for 10 seconds to the right of track 1 and 4
seconds to the left.

autoSIMP 229 ©Copyright 2011 SMC

o
@SVC User manual

SOIION: A AAAAAAAAA AN AN AN

— t1d | TO(108S) o

L— s Dv1 o>

— t1li | T1(4S) o

L (R DV1) S—

—— Tf1i pb———+ Ttid } AV1 o
—1 0 f
—] t1 [

Example\ladder\ladder3.agn

A final example, even a little more complicated

Conditions:

Again a locomotive which makes round trips on track 1. For each 10
round trips it must stop for 15 seconds.

Solution:

110 } RCO >

—— 0 f

—— 1 tld }—— TavI ¢} +CO o—
L s bv1 o

| tli } R DV1

————— c0<10 } AV1 >

—— o f

] c0=10 | TO(15S) D ——

Example\ladder\ladder4.agn

Flow chart

AUTOSIM implements flow chart language in the following way:
= use of a special block called « assignment block », this block separates the

action area and test area, it has the following form f— and is associated with
key [0] (zero),

5 it uses the functions« No », « And » and « Or »,

autoSIM® 230 ©Copyright 2011 SMC

o
‘—‘//I-SVD User manual

= it uses action rectangles to the right of the action block.

Flow chart language is used for graphically writing boolean equations.
The test content must comply with the syntax established in the «
Common elements » chapter in this manual.

The content of action rectangles must comply with the syntax for
actions, also described in the « Common elements » chapter of this
manual.

« Test » Area

Affection block
for separating
the test area
from the action

— area

| «Action » area

Drawing flow charts

Number of input of functions « And » and « Or »
The « And » and « Or » functions are respectively composed of a

block 1* T (key [2]) or a block 1** [(key [3]), and possible plocks 1 |

(key [4]) for adding inputs to blocks and finally block L | (key [9]).
The functions « And » and « Or » thus involve a minimum of two
inputs..

Chaining the functions
The functions can be chained.

& H

autoSIMP 231 ©Copyright 2011 SMC

o
‘—‘//I-SVD User manual

Multiple actions

Multiple action rectangles can be associated to a flow chart after the
assignment block..

. : z1 H—H 1 i |
or
. ' 2t H— I i 1 |
—] i 1 |
—] i 1 |

Example of a flow chart
Let's start with the simplest example:

Conditions:
Roundtrip of a locomotive on track 1.
Solution 1:
— =1 | AV1
— A tid | S DV1
— A tli | R DV1

Example\flow chart\logigramme1.agn

Solution 2:
— =1 : AV1
— 1 tild | > DV1
— 1 dvl } &

— tli] a

Example\flow chart\logigramme2.agn

The second solution is identical from an operational point of view. It is
used to display the use of a self-controlled variable.

Let's make the example more complex.
Conditions:

autoSIMP 232 ©Copyright 2011 SMC

o
-‘-//;SVC User manual

The locomotive must stop for 10 seconds to the right of track 1 and 4
seconds to the left.

SOMION: s
— tld | TO(10S)
S DV1
— t1li | T1(48)
R DV1
——] t0 } > AV1
—tl l
b & -
5

Example\flow chart\logigramme3.agn

Note the reuse of the «And» block in the lower part of the example
towards the inputs « t1d_» and « _t1i_». This prevents having to
write the two tests a second time.

A final example a bit more complicated.

Conditions:

Again a locomotive which makes round trips on track 1. Each 10 round
trips it must stop for 15 seconds.

autoSIM® 233 ©Copyright 2011 SMC

o
"@SVC User manual

Soluton:
— 10 | > RCO
— 1 t0 |
— | t1d | & +CO
- | avi p—] o | s DV1
—_—] t1i | R DV1
— | c0<10 | | AV1
— t0 I
—{ c0=10 | T0O(155)

Example\flow chart\logigramme4.agn

Literal languages

This chapter describes the use of the three forms of literal language
which are available in AUTOSIM:

= low level literal language,
= extended literal language,

= |EC 1131-3 standard ST literal language

How is a literal language used?
Literal language can be used in the following forms:
= code files associated to an action (Grafcet, Ladder, flow chart),

= code boxes associated to an action (Grafcet, flow chart),
= literal code in action rectangle or coil (Grafcet, Ladder, flow chart),

= code boxes used in the form of an organizational chart (see the
«Qrganizational chart » chapter),

= code files which support the function block functionality (see the « Function
blocks » chapter),

= code files which support a macro-instruction functionality see chapter Macro-
instruction.

autoSIMP 234 ©Copyright 2011 SMC

% SNC

Code box associated with a step or flow chart

A code box associated with an action is for being able to write lines of
literal language on an application page.

User manual

Examples:

12 | lda 1688
sta m248

| \ |]
id & lda ZB88
I : [— sta mSEQ

{il I

The code used above is scanned as long as the action is true.
It is possible to use the action rectangles and code boxes together.

Example:

|1é [{o1a [1da mige
T =ta mlBl

Literal code in an action rectangle or coil

The characters « { » and « } » are used to directly enter instructions in
literal language into an action rectangle (Grafcet and flow chart
languages). The character« , » (comma) is used as a separator if
multiple instructions are present in « { » and « } ».

This type of entry can be used with conditional orders.

Examples:
[1a |{eInc mzead

|—1'ua i1 f———({INC HM28a2]4{

r— tig r— til

|1é [{eInc rzeas [{£CEC rza13 [{InC rzaz, ING Hzas)
T

autoSIM® 235 ©Copyright 2011 SMC

O

SVD- User manual

Setting a code box
To create a code box, follow the steps below:
=> click on an empty space on the sheet with the right side of the mouse,

= select « Add ... / Code box » from the menu,

= click on the edge of the code box to edit its contents.

To exit the code box after editing click on [Enter] or click outside it.

Low level literal language

This chapter describes the use of low level literal language. This
language is an intermediate code between the evolved languages of
Grafcet, flow chart, ladder, organizational chart, function block,
extended literal, ST literal and executable languages. It is also know
as pivot code. Post-processors translate low level literal language into
executable code for the PC, automate or microprocessor card.

Literal language can also be used for an application in order to effect
various boolean, numeric or algebraic operations.

Low level literal language is an assembler type language. It uses the
idea of an accumulator for numeric treatment.

Extended literal language and ST literal language described in the
following chapters, offer a simplified and higher level alternative for
writing programs in literal language.

The general syntax for a line of low level literal language is:

«action » [[[« Test »] « Test »]...]

The actions and tests of low level literal language are represented by
mnemonics formed of three letters. An instruction is always followed
by an expression: variable, constant etc.

A line is composed of a single action and possibly a test. If a line only
includes an action, then the instruction is always executed.

Variables

The variables used are the same as those described in the « Common
elements » chapter.

Accumulators

Some instructions use an accumulator. The accumulators are internal
registers which execute the final program and make it possible to
temporarily store values.

There are three accumulators: a 16 bit accumulator known as AAA, a
32 bit accumulator known as AAL and a float accumulator known as
AAF.

autoSIM® 236 ©Copyright 2011 SMC

P
-“//I-SVD User manual

Flags

Flags are boolean variables which are positioned based on the result
of numeric operations.

There are four permanent flags to test the result of a calculation.
These four indicators are:

= carry indicator C:it indicates if an operations has generated a carry figure (1) or

not (0),

= zero indicator Z:it indicates if an operations has generated a nil result (1) or not
nil (0),

= sign indicator S: it indicates if an operation has generated a negative result (1)
or positive one (0),

= overflow indicator O: it indicates if an operation has generated an overflow (1).

Addressing modes

Low level literal language has 5 addressing modes. An addressing
mode is a characteristic associated to each literal language instruction.
Addressing modes used appear below:

TYPE SYNTAX EXAMPLE
Immediate 16 bits |{constant} 100
Immediate 32 bits |{constant}L 100000L
Immediate float {constant}R 3.14R
Absolute {variable} {variable reference} | 0540

16 bit accumulator |AAA AAA

32 bit accumulator |AAL AAL

Float accumulator |AAF AAF
Indirect {variable}{(word reference)} |0(220)
Label {label name}: loop

Thus an instruction has two characteristics: the type of variable and
the addressing mode. Certain instructions support or do not support
certain addressing modes and certain variable types. For example, an
instruction may only apply to two words and not to other types of
variables.

Note: Variables X and U can not be associated to an indirect address
due to the non-linear nature of their assignments. If it is necessary to
access a U variable table then a command #B must be used to make a
table of linear bits.

autoSIMP 237 ©Copyright 2011 SMC

P
-‘-//;SVC User manual

Tests

Tests that can be associated to instructions are composed of a
mnemonic, a type of test and a variable.

Test mnemonics are used to set combination tests on multiple
variables (and, or). If a test is composed of a single variable, an AND
operator needs to be associated to it.

There are only three test mnemonics:

AND and

ORR or

EOR end or

Here are some examples of equivalencies in boolean equations and
low level literal language:

00=il : and il

00=il.1i2 : and il and i2

00=11+12 : orr il eor i2

00=11+12+13+i4 : orr il orr i2 orr i3 eor i4
o0=(11+12) . (13+14) : orr il eor 12 orr i3 eor 1i4
o00=11.(12+413+14) : and 1l orr 12 orr i3 eor 1i4
00=(11.12)+(1i3.14) ; impossible to translate directly,

; intermediate variables

; must be used:

equ ul00 and il and 12
equ ul0l and i3 and i4

equ o0 orr ul00 eor ulOll

Test modifiers make it possible to test things other than the truth of a
variable:

= no
= # rising edge
= falling edge

= @ immediate state

Notes:

= boolean variables are updated after each execution cycle. In other words, if a
binary variable is positioned at a state during a cycle, then its new state will be
detected during the following cycle. The text modifier @ makes it possible to
obtain the real state of a boolean variable without waiting for the following
cycle.

= test modifiers cannot be used with numeric tests.

autoSIM® 238 ©Copyright 2011 SMC

O

gvc* User manual

Examples:

set 0100

equ o0 and @ol00 ; true test of the first cycle
equ ol and 0100 ; true test at the second cycle

Only two addressing modes are available for tests: absolute and
indirect
A test for counters, words, longs and floating points is available:

Syntax:

« {variable} {=, !, <, >, << , >>} {constant or variable} »

= equal,

| different,

< less than not signed,

> greater than not signed,

<< less than signed,

>> greater than signed,

By default, constants are written in decimals. The suffixes « $ » and
« % » are used for writing in hexadecimal or binary. The quotation
marks are for writing in ASCII.

32 bit constants must be followed by the letter « L ».

Real constants must be followed by the letter « R ».

A word or a counter can be compared to a word, a counter of a 16 bit
constant..

A long can be compared to a long or a 32 bit constant.

A float can be compared to a float or a real constant.

Examples:
and c0>100 and m225=10

orr m200=m201 eor m202=m203 and £100=£101 and £200<£203
orr m200<<-100 eor m200>>200

and £200=3.14r

and 1200=512345678L

and m200=%1111111100000000

Comments

Comments need to start with the character « ; » (semi-colon), all the
characters after it are ignored.

autoSIM® 239 ©Copyright 2011 SMC

O

svc/ User manual

Numbering base

The values (variable references or constants) can be written in
decimal, hexadecimal, binary or ASCII.
The following syntax must be applied for 16 bit constants:

= decimal:possibly the character « - » plus 1 to 5 digits « 0123456789 »,

= hexadecimal: the prefix «$» or «16#» followed by 1 to 4 digits
« 0123456789ABCDEF »,

=> binary: the prefix « % » or « 2# » followed by 1 to 16 digits « 01 »,

= ASCII: the character « " » followed by 1 or 2 characters followed by « " ».

The following syntax must be applied for 32 bit constants:
= Decimal: possibly the character « - » plus 1 to 10 digits « 0123456789 »,

= Hexadecimal: the prefix «$» or «16#» followed by 1 to 8 digits
« 0123456789ABCDEF »,

= Binary: the prefix « % » or « 2# » followed by 1 to 32 digits « 01 »,

=> ASCII: the character « " » followed by 1 to 4 characters followed by « " ».

The following syntax must be applied for real constants:
[-1i [[.d] Esx]

i is the whole part

of a decimal part

s possible sign of an exponent

x possible exponent

Presettings

A presetting is used to fix the value of a variable before starting the
application.

The variables T or %T, M or %MW, L or %MD and F or %F can be
preset.

The syntax is as follows:

« $(variable)=constant{, constant{, constant...}} »

For time delays the variable must be written in decimal and be
included between 0 and 65535.
For words the following syntax must be used:

autoSIMP 240 ©Copyright 2011 SMC

O

svc/ User manual

= Decimal: possibly the character « - » plus 1 to 5 digits « 0123456789 »,

=> Hexadecimal: the prefix «$» or « 16#» followed by 1 to 4 digits
« 0123456789ABCDEF »,

= Binary: the prefix « % » or « 2# » followed by 1 to 16 digits « 01 »,

= ASCII: (two characters per word) the character «" » followed by n

characters followed by « " »,

= ASCII: (one character per word) the character «’ » followed by n
characters followed by « ’* ».

For longs the following syntax must be used:
= Decimal: possible the character « - » plus 1 to 10 digits « 0123456789 »,

=> Hexadecimal: the prefix «$» or «16#» followed by 1 to 8 digits
« 0123456789ABCDEF »,

= Binary: the character « % » or « 2# » followed by 1 to 32 digits « 01 »,

=> ASCII: (four characters per long) the character « " » followed by n characters

followed by « " »,

=> ASCII: (one character per long) the character «’ » followed by n characters

followed by «’ »

For floats the value must be written in the following form:

[-1i[[.d] Esx]

i is the whole part

d a possible decimal part
s a possible exponent sign
X a possible exponent

Examples:

$t25=100

fixes the time delay order 25 at 10 s
$MW200=100,200,300,400

places the values 100,200,300,400 in the words 200, 201, 202, 203
Sm200="ABCDEF"

places the string « ABCDEF » starting from m200 (« AB » in m200,
« GD » in m201, « EF » in m202)

$Sm200=‘'ABCDEF "’

autoSIMP 241 ©Copyright 2011 SMC

P
-“//I-SVD User manual

places the string « ABCDEF » starting from m200, each word receives

a character
$£f1000=3.14

places the value 3,14 in {1000

$%mf100=5.1E-15

places the value 5,1 * 10 exponent -15 in %mf100
$1200=16#12345678

places the value 12345678 (hexa) in the long 1200
It is easier to write text in the presettings.

Example:

$Sm200=" Stop the gate N°10 "

Places the message starting from word 200 by placing two characters
in each word.

$m400=’ Motor fault

Places the message starting from word 400 by placing a character in
the byte of lower weights of each word, the byte of higher weights
contains 0.

The syntax « $...= » is used to continue a table of presettings after the
previous one.

For example:

#5m200=1,2,3,4,5
#$...=6,7,8,9

Place the variables 1 to 9 in the words m200 a m208.

Presettings can be written in the same manner as low level literal
language or in a command on a sheet. In this case, the presetting
starts with the character « # ».

Example of a presetting written in a code box:

i@ fmzEB=12, 13

i place 12 waleur
1 12 dans mZBEE et 13
i dans mz2@1

Example of a presetting written in a command:

#in2E6=12, 132

autoSIMP 242 ©Copyright 2011 SMC

P
-“//;SVC User manual

Indirect addressing

Indirect addressing is used to effect an operation on a variable with an
index..

These are M variables (words) which are used as an index

Syntax:

« variable (index) »

Example:

lda 10 ; load 10 in the accumulator

sta m200 ; enter in the word 200

set 0(200) ; set to one the output indicated by the word 200 (010)

Address of a variable

The character « ? » is used to specify the address of a variable.
Example:

lda 2010 ; enters the value 10 in the accumulator

This syntax is primarily of interest if symbols are used.

Example:

lda ?_gate_ ; enters the variable number in the accumulator

; associated to symbol « _gate_ »

This syntax can also be used in presettings to create variable address
tables..

Example:

$m200=7?_gatel_, ?_gate2_,?_gate3_

Jumps and labels

Jumps must be referred to a label. Label syntax is:
«:label name: »
Example:

Jjmp:next:
tnext:

Function list by type

Boolean functions

SET set to one

RES reset

INV inversion

EQU equivalence
NEQ non-equivalence

autoSIMP 243 ©Copyright 2011 SMC

% SNC

User manual

Loading and storage functions on integers and floats

LDA load

STA storage

Arithmetic functions on integers and floats
ADA addition

SBA subtraction

MLA multiplication

DVA division

CPA comparison

Arithmetic functions on floats

ABS absolute value

SQR square root

Access functions for PC input/output ports
AIN access input

AOU access output

Access functions for PC memory

ATM input address memory
MTA output address memory

Binary functions on integers

ANA and bit to bit
ORA or bit to bit

XRA exclusive or bit to bit
TSA test bit to bit
SET set all bits to one
RES reset all bits
RRA shift to the right
RLA shift to the left
Other functions on integers
INC incrementation
DEC decrementation

Conversion functions

ATB integers to booleans

BTA booleans to integers

FTI float to integer

ITF integer to float

LTI 32 bit integer to 16 bit integer
autoSIMP 244

©Copyright 2011 SMC

O

gvc* User manual

ITL 16 bit integer to 32 bit integer
Trigonometric functions

SIN sine

COS cosine

TAN tangent

ASI arc sine

ACO arc cosine

ATA arc tangent

Connection functions

JMP jump

JSR jump to sub routine
RET return from sub routine

Test functions

RFZ zero result flag
RFS sign flag

RFO overflow flag
RFC carry flag

Asynchronous access functions to inputs outputs

RIN read inputs
wOou write outputs

Information contained in the function list

The following are provided for each instruction:
=> Name: mnemonic.

=> Function: a description of the function created by the instruction.
=> Variables: the types of variables used with the instruction

= Addressing: the types of addressing used

= Also see: the other instructions related to the mnemonic.

=> Example: a example of the use.

The post-processors which generate construction language are
subject to certain limitations. See the information on these post-
processors for details on these limitations.

autoSIMP 245 ©Copyright 2011 SMC

O

SMC

User manual

ABS
Name : ABS - abs accumulator
Function : calculate the absolute value of the floating accumulator
Variables : none
Addressing : accumulator
Also see : SQR
Example

lda 200

abs aaf

sta 201

; leaves 201 in the absolute value of 200

autoSIMP 246 ©Copyright 2011 SMC

O

SVC/ User manual
ACO

Name : ACO — accumulator arc cosine
Function : calculate the arc cosine value of the floating-point
accumulator
Variables : none
Addressing accumulator
Also see : COS, SIN, TAN, ASI, ATA
Example:
lda £200
aco aaf
sta 201

; leave the value of the arc cosine of 200 in 201

autoSIMP 247 ©Copyright 2011 SMC

SMC
ADA

O

User manual

Name : ADA - adds accumulator
Function : adds a value to the accumulator
Variables : M or %MW, L or %MD, F or %MF
Addressing : absolute, indirect, immediate
Also see : SBA
Example

ada 200

; adds 200 to the 16 bit accumulator

ada 124

; adds the content of £124 to the float accumulator

ada 1200
; adds the content of 1200 to the 32 bit accumulator

ada 200L
; adds 200 to the 32 bit accumulator

ada 3.14R

; adds 3.14 to the float accumulator

autoSIMP 248 ©Copyright 2011 SMC

O

SVC/ User manual
AIN

Name : AIN - accumulator input
Function : reads an input port (8 bits) and stores in
the lower part of the 16 bit accumulator ;

reads a 16 bit input port and stores in the 16 bit accumulator
(in this case the port address must be written in the form of a
32 bit constant)

only useable with PC compiler

Variables : M or %MW
Addressing indirect, immediate
Also see : AOU
Example

ain $318

; reads port $3f8 (8 bits)

ain $3£8l
; reads port $318 (16 bits)

autoSIMP 249 ©Copyright 2011 SMC

O

SVC/ User manual

Name : ANA - and accumulator

Function : effects an AND logic in the 16 bit accumulator
and a word or a constant or the 32 bit accumulator and

a long or a constant

Variables : M or %MW, L or %eMD
Addressing : absolute, indirect, immediate
Also see : ORA, XRA

Example

ana %1111111100000000
; masks the 8 bits of lower weight of

; the 16 bit accumulator

ana $TO000L

; masks the 16 bits of lower weight of the 32 bit accumulator

autoSIM® 250 ©Copyright 2011 SMC

O

SVC/ User manual
AOU

Name : AOQOU - accumulator output

Function : transfers the lower part (8 bits) of the 16 bit accumulator
on an output port ;
transfers the 16 bits of the 16 bit accumulator
on an output port (in this case the port address must be
written in the form of a 32 bit constant)

only useable with PC compiler

Variables : M or %MW
Addressing indirect, immediate
Also see : AIN
Example

lda"A"

aou $3f8

; places the character« A » on output port $38

lda $3£8
sta m200
lda "z"

aou m(200)

; places character « z » on output port $3f8

l1da $1234
aou $3001
; places the 16 bit value 1234 on output port $300

autoSIMP 251 ©Copyright 2011 SMC

O

SMC

User manual

AST
Name : ASI — accumulator arc sine
Function : calculate the arc sine value of the floating-point accumulator
Variables : none
Addressing : accumulator
Also see : COS, SIN, TAN, ACO, ATA
Example:

lda 200

asi aaf

sta 201

; leave the value of the arc sine of 200 in 201

autoSIMP 252 ©Copyright 2011 SMC

O

SVC/ User manual
ATA

Name : ATA — accumulator arc tangent
Function : calculate the arc tangent value of the floating-point
accumulator
Variables : none
Addressing accumulator
Also see : COS, SIN, TAN, ACO, ASI
Example:
lda £200
ata aaf
sta 201

; leave the value of the arc tangent of 200 in 201

autoSIM® 253 ©Copyright 2011 SMC

O

SVC/ User manual
ATB

Name : ATB - accumulator to bit

Function : transfers the 16 bits of the 16 bit accumulator
towards the subsequent 16 boolean variables ; the
the lower weight bit correspond to the first

boolean variable

Variables : I or %I, O or %Q, B or %M, T or %T, U
Addressing absolute
Also see : BTA
Example
lda m200
atb 00

; recopies the 16 bits of m200 in variables
;00tool5

" Note: to be able to use the U bits with this function it is necessary to create a linear table of bits

using command #B.

autoSIMP 254 ©Copyright 2011 SMC

O

SVC/ User manual
ATM

Name : ATM - accumulator to memory

Function : transfers the 16 bit accumulator to a memory
address; the word or specified constant
defines the memory address offset
to reach, the word m0 must be loaded with the
segment value of the memory address to reach

only useable with PC compiler

Variables : M or %MW
Addressing indirect, immediate
Also see : MTA
Example

lda $b800

sta m0

lda 64258

atm $10

; places the value 64258 at address $56800:$0010

autoSIM® 255 ©Copyright 2011 SMC

SMC

O

User manual

BTA

Name

Function

Variables
Addressing
Also see

Example

BTA - bit to accumulator

transfers the subsequent 16 boolean variables
towards the 16 bits of the 16 bit accumulator ;
the lower weight bit corresponds to the first

boolean variable

I or %I, O or %Q, B or %M, T or %T, U’
absolute
ATB

bta 10
sta m200
; recopies the 16 inputs 10 to 115 in the word m200

" Note: to be able to use the U bits with this function it is necessary to create a linear table of bits

using command #B.

autoSIM®

256 ©Copyright 2011 SMC

O

SVC/ User manual
COS

Name : COS — accumulator cosine
Function : calculate the cosine value of the floating-point accumulator
Variables : none
Addressing : accumulator
Also see : SIN, TAN, ACO, ASI, ATA
Example:
lda 200
cos aaf
sta 201

; leave the value of the cosine of 200 in 201

autoSIMP 257 ©Copyright 2011 SMC

SMC

O

User manual

CPA

Name

Function

Variables
Addressing
Also see

Example

autoSIM®

CPA - compares accumulator

compares a value at the 16 bit or 32 bit or floating
accumulator, effects the same operation as SBA

but without changing the content of the accumulator
M or %MW, L or %MD, F or %MF

absolute, indirect, immediate

SBA

Ida m200
cpa 4
rfz 00

; sets 00 to 1 if m200 is equal to 4, otherwise 00
;isreset to 0

Ida 200
cpa 201
rfz ol

; sets ol to 1 if 200 is equal to 201, otherwise ol
;isreset to 0

258 ©Copyright 2011 SMC

O

SVC/ User manual
DEC

Name : DEC — decrement
Function : decrements a word, a counter, a long, the 16 bit or 32 bit
accumulator
Variables : M or %MW, C or %C, L or %MD
Addressing absolute, indirect, accumulator
Also see : INC
Example
dec m200

; decrements m200

dec aal

; decrements the 32 bit accumulator

dec m200
dec m201 and m200=-1

; decrements a 32 bit value composed of
; m200 (lower weights)
; et m201 (higher weights)

autoSIM® 259 ©Copyright 2011 SMC

o
"-//’-SVC User manual

DVA

Name : DVA - divides accumulator
Function : division of the 16 bit accumulator by a word or
a constant; division of the float accumulator by
a float or a constant; division of the 32 bit
by a long or a constant, for the 16 bit accumulator

the remainder is placed in word mO, if the division

isby 0
system bit 56 passes to 1
Variables : M or %MW, L or %MD, F or %MF
Addressing absolute, indirect, immediate
Also see : MLA
Example
lda m200
dva 10
stam201

; m201 is equal to m200 divided by 10, mO contains the

; remainder
l1da 1200

dva $10000L
sta 1201

autoSIM® 260 ©Copyright 2011 SMC

SMC

O

User manual

EQU

Name

Function

Variables
Addressing
Also see

Example

autoSIM®

EQU - equal

sets a variable to 1 if the test is true,

if not the variable is set to

0

I or %I, O or %Q, B or %M, T or %T, X or %X, U
absolute, indirect (except for X variables)

NEQ, SET, RES, INV

equ o0 and 110

; sets the output of 00 to the same state as input 110

lda 10
sta m200
equ 0(200) and 10

; sets 010 to the same state as input 10

$t0=100

equ t0 and 10

equ 00 and t0

; sets 00 to the state of 10 with an activation delay

; of 10 seconds

261 ©Copyright 2011 SMC

SMC

O

User manual

FTT1

Name

Function

Variables
Addressing
Also see

Example

autoSIM®

FTI - float to integer

transfers the float accumulator to the 16 bit accumulator

none
accumulator
ITFE

lda £200

fti aaa

sta m1000

; leaves the integer part of 200 in m1000

262 ©Copyright 2011 SMC

SMC

O

User manual

INC

Name

Function

Variables
Addressing
Also see

Example

autoSIM®

INC - increment

increments a word, a counter, a long the 16 or 32 bit
accumulator

M or %MW, C or %C, L or %MD

absolute, indirect, accumulator

DEC

inc m200
; adds 1 to m200

inc m200
inc m201 and m201=0

; increments a value on 32 bits, m200
; represents the
; lower weights, and m201 the higher weights

inc 1200

; increments long 1200

263 ©Copyright 2011 SMC

SMC

O

User manual

INV

Name
Function
Variables
Addressing

Also see

Example

autoSIM®

INV - inverse

inverts the state of a boolean variable or inverts

all the bits of a word, a long or the 16 bit or 32 bit
accumulator

I or %I, O or %Q, B or %M, T or %T, X or %X, U,
M or %MW, L or %MD

absolute, indirect, accumulator
EQU, NEQ, SET, RES

inv 00

; inverts the state of output 0

inv aaa

; inverts all the bits of the 16 bit accumulator

inv m200 and i0
; inverts all m200 bits if 10 is at state 1

264 ©Copyright 2011 SMC

SMC

O

User manual

ITF

Name
Function
Variables
Addressing
Also see

Example

autoSIM®

ITF - integer to float

transfers the 16 bit accumulator to the float accumulator

none
accumulator

FTI

Ida 1000
itf aaa
sta 200

; leaves the constant 1000 in £200

265

©Copyright 2011 SMC

SMC

O

User manual

ITL

Name
Function
Variables
Addressing
Also see

Example

autoSIM®

ITL - integer to long

transfers the 16 bit accumulator to the 32 bit accumulator

none
accumulator

LTI

lda 1000

itl aaa

sta 200

; leaves the constant 1000 in 1200

266

©Copyright 2011 SMC

SMC

O

User manual

JMP

Name
Function
Variables
Addressing
Also see

Example

autoSIM®

JMP - jump
jump to a label
label

label

JSR

jmp:end of program:

; unconditional connection to end of
; program label:

jmp:string: and 10
set 00

set ol

:string:

; conditional connection to a label:string:
; following the state of 10

267 ©Copyright 2011 SMC

SMC

O

User manual

JSR

Name
Function
Variables
Addressing
Also see

Example

autoSIM®

JSR - jump sub routine

effects a connection to a sub routine
label

label

RET

lda m200
jsrisquare:
sta m201
jmp end:

-squarce:

:end:

sta m53
mla m53
sta m53

ret m53

; the sub routine « square » raises the content
; of the accumulator to the square

268

©Copyright 2011 SMC

SMC

O

User manual

LDA

Name

Function

Variables
Addressing
Also see

Example

autoSIM®

LDA - load accumulator

loads a constant, word or counter in the 16 bit
accumulator; loads a long or constant in the 32

bit accumulator; loads a float or a constant in the

float accumulator; loads a counter or a time delay

in the 16 bit accumulator

M or %MW, C or %C, L or %MD, F or %MF, T or %T
absolute, indirect, immediate

STA

1da 200

; loads the constant 200 in the 16 bit accumulator

Ida 0.01R

; loads the real constant 0.01 in the float accumulator

1da t10
; loads the counter of time delay 10 in the

; accumulator

269 ©Copyright 2011 SMC

SMC

O

User manual

LrT

Name

Function

Variables
Addressing
Also see

Example

autoSIM®

LTI - long to integer

transfers the 32 bit accumulator to the 16 bit
accumulator

none

accumulator

ITL

1da 1200

Iti aaa

sta m1000

; leaves the 16 bits of lower weight of 1200 in m1000

270 ©Copyright 2011 SMC

SMC

O

User manual

MILA

Name

Function

Variables
Addressing
Also see

Example

autoSIM®

MLA - multiples accumulator

multiplies the 16 bit accumulator by a word or a constant;
multiplies the 32 bit accumulator by a long or a constant;
multiplies the float accumulator by a float or a constant;
for the 16 bit accumulator the 16 bits of higher weight
result of the multiplication will be transferred in

m0

M or %MW, L or %MD, F or %eMF

absolute, indirect, immediate

DVA

Ida m200
mla 10
sta m201

; multiplies m200 by 10, m201 is loaded with the
; 16 bits of lower weight, and m0 with the 16 bits of
; higher weight

271 ©Copyright 2011 SMC

SMC

O

User manual

MTA

Name

Function

Variables
Addressing
Also see

Example

autoSIM®

MTA - memory to accumulator

transfers the contents of a memory address to the

16 bit accumulator, the specified word or constant

defines the offset of the memory address to reach; the word
m0 must be loaded with the segment value of the memory

address to be reached; only useable with a PC compiler

M or %MW
indirect, immediate

ATM

Ida $b800
sta m0
mta $10

; places the value contained at address $6800:$0010
; in the 16 bit accumulator

272 ©Copyright 2011 SMC

SMC

O

User manual

NEQ

Name

Function

Variables
Addressing
Also see

Example

autoSIM®

NEQ - not equal
sets a variable to O if the test is true,

if not the variable is set to 1

I or %I, O or %Q, B or %M, T or %T, X or %X, U
absolute, indirect (except for X variables)
EQU, SET, RES, INV

neq o0 and 100

; sets the output of 00 to a complement state of input
;110

lda 10
sta m200
neq 0(200) and 10

; sets 010 to a complement state of input 10

$t0=100
neq t0 and 10
neq o0 and t0

; sets 00 to the state of 10 with a deactivation
; delay of 10 seconds

273 ©Copyright 2011 SMC

O

SVC/ User manual
ORA

Name : ORA - or accumulator
Function : effects an OR logic on the 16 bit accumulator
and a word or a constant, or on the 32 bit accumulator

and a long or a constant

Variables : M or %M, L or %MD
Addressing absolute, indirect, immediate
Also see : ANA, XRA

Example

ora %1111111100000000
; sets the 8 bits of lower weight of

; the 16 bit accumulator to 1
ora $ffffO000L

; sets the 16 bits of higher weight of the 32 bit accumulator
;tol

autoSIMP 274 ©Copyright 2011 SMC

SMC

O

User manual

RES

Name
Function
Variables
Addressing

Also see

Example

autoSIM®

RES - reset

sets a boolean variable, a word

a counter, a long, the 16 bit accumulator

or the 32 bit accumulator to 0

I or %I, O or %Q, B or %M, T or %T, X or %X, U,

M or %MW, C or %C, L or %MD

absolute, indirect (except for X variables), accumulator

NEQ, SET, EQU, INV

res o0

; sets the output of 00 to 0

lda 10

sta m200

res 0(200) and 10

; sets 010 to 0 if input 10 is at 1

res cO

; sets counter 0 to 0

275 ©Copyright 2011 SMC

SMC

O

User manual

RET

Name

Function

Variables
Addressing
Also see

Example

autoSIM®

RET - return

indicates the return of a sub routine and
places a word or a constant in the 16 bit
accumulator; or places a long or a constant in
the 32 bit accumulator; or places a float or a
constant in the float accumulator

M or %MW, L or %MD, F or %MF
absolute, indirect, immediate

JSR

ret 0
; returns to a sub routine by placing 0 in

; the 16 bit accumulator

ret 200
; returns to a sub routine by placing the content of

; £200 in the float accumulator

276 ©Copyright 2011 SMC

SMC

O

User manual

RFC

Name

Function

Variables
Addressing
Also see

Example

autoSIM®

RFC - read flag: carry

transfers the carry indicator in a
boolean variable

I or %I, O or %Q, B or %M, T or %T, X or %X, U

absolute
REZ, RES, RFO

rfc 00

; transfers the carry indicator to 00

lda m200

ada m300

sta m400

rfc b99

lda m201

ada m301

sta m401

inc m401 and b99

; effects an addition on 32 bits

; (m400,401)=(m200,201)+(m300,301)

; m200, m300 and m400 are lower weights

; m201, m301 and m401 are higher weights

277

©Copyright 2011 SMC

SMC

O

User manual

RFO

Name

Function

Variables
Addressing
Also see

Example

autoSIM®

RFO - read flag: overflow

transfers the contents of the overflow indicator in
a boolean variable

I or %I, O or %Q, B or %M, T or %T, X or %X, U
absolute
RFEZ, RES, REC

rfo 00

; transfers the overflow indicator to 00

278 ©Copyright 2011 SMC

SMC

O

User manual

RFS

Name

Function

Variables
Addressing
Also see

Example

autoSIM®

REFS - read flag: sign
transfers the sign indicator in a

boolean variable

I or %I, O or %Q, B or %M, T or %T, X or %X, U

absolute
RFEZ, REC, RFO

rfs 00

; transfers the sign indicator to 00

279

©Copyright 2011 SMC

SVC/ User manual

O

RFZ

Name : RFZ - read flag: zero
Function : transfers the content of a zero result indicator
in a boolean variable
Variables : I or %I, O or %Q, B or %M, T or %T, X or %X, U
Addressing absolute
Also see : RFC, RFS, RFO
Example
rfz 00

; transfers the zero result indicator to 00

lda m200

cpa m201

rfz 00

; position 00 at 1 if m200 is equal to m201

; or 0 if not

autoSIM® 280 ©Copyright 2011 SMC

O

SVC‘ User manual

RIN

Name : RIN - read input

Function : effects a reading of physical input. This function is only
implemented on Z targets and varies following the target.
See the documentation related to each executor

for more information..

Variables : none
Addressing immediate
Also see : wou

autoSIMP 281 ©Copyright 2011 SMC

O

User manual

Name
Function

Variables
Addressing
Also see

Example

accumulator

autoSIM®

RLA - rotate left accumulator
effects a left rotation of the bits of the

16 bit or 32 bit accumulator; the bits evacuated to the left
enter on the right, the subject of this function is a constant
which sets the number of shifts to be made, the size of the
subject (16 or 32 bits) determines which of the

accumulators will undergo rotation

none
immediate

RRA

ana $f000
; separates the digit of higher weight of the 16 bit

rla 4
; and brings it to the right

rla 8L
; effects 8 rotations to the left of the bits of the 32 bit

; accumulator

282 ©Copyright 2011 SMC

SMC

O

User manual

RRA

Name
Function

Variables
Addressing
Also see

Example

autoSIM®

RRA - rotate right accumulator
effects a right rotation of the bits of the

16 bit or 32 bit accumulator; the bits evacuated to the right
enter on the left, the subject of this function is a constant which sets
the number of shifts to be made, the size of the subject (16 or 32
bits) determines which of the accumulators will undergo rotation

none
immediate
RLA

ana $f000
; separates the digit of higher weight of the 16 bit
rra 12

; and brings it to the right
rra 1L

; effects a rotation of the bits of the 32 bit accumulator

; to a position towards the right

283 ©Copyright 2011 SMC

O

SVC/ User manual
SBA

Name : SBA - subtracts accumulator

Function : removes the content of a word or constant from
the 16 bit accumulator; removes the content of a long or a
constant from the 32 bit accumulator; removes the content

of a float or constant from the float accumulator

Variables : M or %MW, L or %MD, F or %MF
Addressing absolute, indirect, immediate
Also see : ADA
Example
sba 200

; removes 200 from the 16 bit accumulator

sba 1(421)
; removes the float content if the number is contained

; in word 421 from the float accumulator

autoSIMP 284 ©Copyright 2011 SMC

SMC

O

User manual

SET

Name

Function
Variables
Addressing

Also see

Example

SET - set

sets a boolean variable to 1; sets all the bits of a word,
a counter, a long, the 16 bit or the 32 bit

accumulator to 1

I or %I, O or %Q, B or %M, T or %T, X or %X, U,

M or %MW, C or %C, L or %MD

absolute, indirect (except for X variables), accumulator
NEQ, RES, EQU, INV

set o0

; sets the output of 00 to 1

lda 10
sta m200
set 0(200) and 10

; sets 010 to 1 if input 10 is at 1

autoSIM®

set m200

; sets m200 to the value -1

set aal

; sets all the bits of the 32 bit accumulator to 1

285 ©Copyright 2011 SMC

O

SVC/ User manual
SIN

Name : SIN — accumulator sine
Function : calculate the sine value of the floating-point accumulator
Variables : none
Addressing : accumulator
Also see : COS, TAN, ACO, ASI, ATA
Example:
lda 200
sin aaf
sta 201

; leave the value of the sine of £200 in 201

autoSIM® 286 ©Copyright 2011 SMC

SMC

O

User manual

SOR

Name
Function
Variables
Addressing
Also see

Example

autoSIM®

SQR - square root

calculates the square root of the float accumulator

none

accumulator
ABS

lda 9

itf aaa
sqr aaf
fti aaa
sta m200

; leaves value 3 in m200

287

©Copyright 2011 SMC

O

SMC

User manual

STA

Name

Function

Variables
Addressing
Also see

Example

autoSIM®

STA - store accumulator

stores the 16 bit accumulator in a counter or a word;
stores the 32 bit accumulator in a long; stores the

float accumulator in a float, stores the 16 bit accumulator
in a time delay order

M or %MW, C or %C, L or %MD, F or %MF, T or %T
absolute, indirect

LDA

sta m200
; transfers the content of the 16 bit accumulator
; to word 200

sta 200
; transfers the content of the float accumulator
; to float 200

sta 1200

; transfers the 32 bit accumulator to long 1200

288 ©Copyright 2011 SMC

O

SVC‘ User manual

Name : TAN — accumulator tangent
Function : calculate the tangent value of the floating-point accumulator
Variables : none
Addressing : accumulator
Also see : COS, SIN, ACO, ASI, ATA
Example:
lda 200
tan aaf
sta 201

; leave the value of the tangent of 200 in 201

autoSIM® 289 ©Copyright 2011 SMC

SMC

O

User manual

TSA

Name

Function

Variables
Addressing
Also see

Example

autoSIM®

TSA - test accumulator
effects AND logic on the 16 bit accumulator and a word
or a constant, effects AND logic on the 32 bit accumulator

and a long or a constant, operates in a similar manner to ANA
instruction but without changing the accumulator content

M or %MW, L or %MD
absolute, indirect, immediate
ANA

tsa %10

rfz b99

jmp:follow: and b99

; connection to label:follow: if bit 1

; of the 16 bit accumulator is at 0

290 ©Copyright 2011 SMC

O

SVC/ User manual
woU

Name : WOU - write output

Function : effects a writing of the physical outputs. This function is
only implemented on Z targets (and varies following the
target) See the documentation related to each executor for

more information

Variables : none
Addressing immediate
Also see : RIN

autoSIMP 291 ©Copyright 2011 SMC

SMC

O

User manual

XRA

Name

Function

Variables
Addressing
Also see

Example

autoSIM®

XRA - xor accumulator

effects an EXCLUSIVE OR on the 16 bit accumulator and
a word or a constant, effects an EXCLUSIVE OR on the 32
bit accumulator and a long or a constant

M or %MW, L or %eMD

absolute, indirect, immediate

ORA, ANA,

xra %1111111100000000
; inverts the 8 bits of higher weight of the 16 bit accumulator

xra 1L

; inverts the lower weight bit of the 32 bit accumulator

292 ©Copyright 2011 SMC

O

svc/ User manual

Macro-instruction

Macro-instructions are new literal language instructions which hold a
set of basic instructions.

Call up syntax for a macro-instruction:

« Y%o<Macro-instruction name > {parameters ...} »

Statement syntax for a macro-instruction:

#MACRO
<program>

#ENDM

This statement is found in a file with the name of the macro-instruction
and the extension « .M ».

The file M can be placed in a sub-directory « lib » of the AUTOSIM
installation directory or in project resources.

Ten parameters can be passed to the macro-instruction. When called
up these parameters are placed on the same line as the macro-
instruction and are separated by a space

The syntax « {?n} » in the macro-instruction program refers to the n
parameter.

Example:

We are going to create a « square » macro-instruction which raises the
first parameter of the macro-instruction to its square and puts the
results in the second parameter.

Call up of the macro-instruction:

lda 3

sta m200

Y%square m200 m201

: m201 will contain 9 here

« SQUARE.M » file:
#MACRO
lda {?0}
mla {?0}
sta {71}
#ENDM

" The name of the macro-instruction can be a complete access path to the file « .M », it can contain

a read and directory designation.

autoSIM® 293 ©Copyright 2011 SMC

P
‘—‘//I-SVD User manual

Libraries

A library is used to define the resources which will be compiled one
time in an application, no matter how many times those resources are
called up.

Syntax for defining a library:

#LIBRARY <Library name>
<program>

#ENDL

<library name > is the function name which will be called up for a
jsr:<library name> instruction:

The first time the library code is called up by the compiler its code is
compiled. The following times, the call up is simply directed to the
existing routine..

This mechanism is especially suited to the use of function blocks and
macro-instructions to limit the generation of codes in the event that
there is multiple use of the same program resources.

Words m120 to m129 are reserved for libraries and can be used for
passing parameters.

Pre-defined macro-instructions

Inversion macro-instructions are in the sub-directory « LIB » of the
AUTOSIM installation directory.
Functional block equivalents are also present.

Description of pre-defined macro-instructions

Conversions
$ASCTOBIN <first two digits> <last two digits> <binary result>

Effecting a hexadecimal ASCIl conversion (first two parameters) to
binary (third parameter), by exiting the accumulator containing $FFFF
if the first two parameters are not valid ASCIlI numbers, otherwise 0. All
the parameters are 16 bit words.

$BCDTOBIN <value in BCD> <binary value>

Effecting a BCD conversion to binary. In the output of the
accumulator containing $FFFF if the first parameter is not a valid bcd
number, otherwise 0. The two parameters are 16 bit words.

$BINTOASC <binary value> <upper part result> <lower part result>

Effecting a binary conversion (first parameter) to hexadecimal ASCII
(second and third parameters). All parameters are 16 bit words.

$BINTOBCD <binary wvalue> <BCI wvalue>

autoSIMP 294 ©Copyright 2011 SMC

P
-“//;SVC User manual

Effecting a BCD (first parameter) conversion to binary (second
parameter). In the accumulator containing $FFFF if the binary number
can be converted in BCD, otherwise 0.

$GRAYTOB <GRAY code value> <binary value>

Effecting a Gray code conversion (first parameter) to binary (second
parameter).

Treatment on word tables

%$COPY <first word table source> <first word table destination> <number of words>

Copy a table of source words to a table of destination words. The
length is given by the number of words.

$COMP <first word table 1> <first word table 2> <number of words> <result>

Compares two tables of words. The result is a binary variable which
takes the value 1 if all the elements in table 1 are identical to those in
table 2.

$FILL <first word table> <value> <number of words>

Fills a word table with a value.

Treatment on strings

The coding of strings is as follows: one character per word, one word
containing the value 0 indicates the end of the chain. In macro-
instructions the strings are passed in parameters by designating by the
first word they are composed of.

%$STRCPY <source string> <destination string>

Copies a string to another.

%$STRCAT <source string> <destination string>

Adds the source string to the end of the destination string.

$STRCMP <string 1> <string 2> <result>

Compares to strings. The result is a boolean variable which passes to
1 if the two strings are identical.

$STRLEN <string> <result>

Places the length of the string in the result word.

$STRUPR <string>

Transforms all the characters of the string into capital letters.
$STRLWR <string>

autoSIM® 295 ©Copyright 2011 SMC

P
-“//;SVC User manual

Transforms all the characters of the string into lower case letters.

Example:

Conversion of m200 (binary) to m202, m203 in 4 digits (ASCII bcd)
Y%bintobcd m200 m201

Y%bintoasc m201 m202 m203

Example of low level literal language

Conditions: let's start with the simplest example: round trip of a
locomotive on track 1.
Solution:

0 set avl

set dvl and _tld_

res _dvl_ and _tli_

Example\lit\low level literal1.agn

A more evolved example.

Conditions:

The locomotive must make a 10 second delay at the right end of the
track and a 4 second delay at the left end.

Solution:

autoSIM® 296 ©Copyright 2011 SMC

N
2

User manual

$t0=

equ

equ

equ

set

equ

res _

100,40

ul00 and _tli_ and _tld_

ul0l orr t0 eor tl

avl orr ul00 eor ulo0l

dvl and _tld_

t0 and _tld_

Example\lit\low level literal 2.agn

autoSIM®

297

©Copyright 2011 SMC

o
-‘-//;SVC User manual

Another example:
Conditions: Make all of the model lights flash:

Solution:

0 ; table contenant 1l'adresse de tous les feux
S_table_=123,7?2_sl1d_,?_sli_,?_s2a_,?_s2b_
S$...=2_s3d_,?_s3i_,?_s4a_,?_s4db_
$...=2_s5i_,?_s5d_,?_s6d_,?_s6i_
S$...=2_s7i_,?_s7d_,?_s8d_,?_s8i_

S...=-1

; initialise 1'index sur le debut de la table
lda ?_table_
sta _index_

:boucle:
; la valeur -1 marque la fin de la table
jmp :fin: and m(_index_)=-1

; inverser la sortie
lda m(_index_)

sta _index2_

inv o(_index2_)

inc _index_

jmp :boucle:

Example\lit\low level literal 3.agn

This example shows the use of presettings. They are used here to
create a variable address table. The table contains the addresses of all
the outputs which pilot the model lights.

For each execution cycle, the state of all the lights is inverted.

A problem occurs, all the lights flash very quickly and it is hard to see
much.

Let's modify our example.

Conditions:

The state of all the lights must remain inverted every ten seconds one
by one.

autoSIM® 298 ©Copyright 2011 SMC

O

SVC* User manual

Solution:

; table contenant 1l'adresse de tous les feux
S_table_=123,?2_sld_,?2_sli_,?_s2a_,?_s2b_

.=?_s3d_,?_s3i_,?_sda_,?_sdb_
.=?_s51i_,?_s5d_,?_s6d_,?_s6i_
.=?_s7i_,?_s7d_,?_s8d_,?_s8i_
==1

index_=7?_table_

$.
$.
S.
$.
S_
:boucle:

; la valeur -1 marque la fin de la table

jmp :fin de table: and m(_index_)=-1

; inverser la sortie
lda m(_index_)

sta _index2_
inv o(_index2_)
inc _index_

jmp :fin:

:fin de table:
lda ?_table_

sta _index_

:fin:

20

—— t0/x20/1

Example\lit\low level literal 4.agn

Extended literal language

Extended literal language is a subset of low level literal language. It is
used for writing boolean and numeric equations more simply and
concisely.

It is still possible to write structures like IF ... THEN ... ELSE and
WHILE ... ENDWHILE (loop).

Use of extended literal language is subject to the same rules as low
level literal language, it uses the same syntax for variables,
mnemonics, the test types (fronts, complement state, immediate state)
and addressing modes.

autoSIM® 299 ©Copyright 2011 SMC

o
-‘-//;SVC User manual

It is possible to mix low level literal language with extended literal
language.

When the compiler of literal language detects a line written in extended
literal language, it decomposes it into low level literal language
instructions, then compiles it.

Writing boolean equations
General syntax:

« bool. variable=(assignment type) (bool. wvariable 2 operator 1 bool. variable

3... operator n -1 bool. variable n) »

The type of assignment must be indicated if it is other than
« Assignment »
It can be:

= « (/) »: complement assignment,
= « (0) »: reset,

= « (1) »:set to one.

The operators can be:
E><<_»:and,

5 « + »: Of.

The equations can contain various levels of parentheses to indicate
the evaluation order. By default, the equations are evaluated from the
left towards the right.

Examples and equivalencies with low level literal language

o0=(10) equ o0 and io0

00=(10.1i1) equ o0 and i0 and il

00=(10+1i1) equ o0 orr i0 eor i1l

o0=(1) set o0

o0=(0) res o0

o0=(1) (10) set o0 and 10

00=(0) (10) res o0 and 10

o0=(1) (10.11) set 00 and i0 and i1

00=(0) (10+4i1) res o0 orr o0 eor il

o0=(/) (10) neq o0 and i0

o0=(/) (10.4i1) neq o0 and i0 and il

00=(/10) equ o0 and /i0

0o0=(/10./11) equ o0 and /10 and /il

00=(c0=10) equ o0 and c0=10

00=(m200<100+m200>200) equ o0 orr m200<100 eor
m200>200

autoSIM® 300 ©Copyright 2011 SMC

O

gvc* User manual

Writing numeric equations
General equations for integers:

« num. variable l=[num. variable 2 operator 1 ... operator n-1 num. variable n] »
The equations can contain various levels of braces for indicating the
evaluation order. By default, the equations are evaluated from left to
rlght Operators for 16 and 32 bit integers can be:

« »: addition (equivalent to instruction ADA),

« — »: subtraction (equivalent to instruction SBA),

« * »: multiplication (equivalent to instruction MLA),
« / »: division (equivalent to instruction DVA),

« < »: shift to left (equivalent to instruction RLA),
« > »: shift to right (equivalent to instruction RRA),
« & »: « And » binary (equivalent to instruction ANA),
« | »: « Or » binary (equivalent to instruction ORA),

« ~ »: « Exclusive or » binary (equivalent to instruction XRA).

Operators for floats can be:
= « + »: addition (equivalent to instruction ADA),

5 « - »: subtraction (equivalent to instruction SBA),
D« * »: multiplication (equivalent to instruction MLA),

= « / »: division (equivalent to instruction DVA).

It is possible to indicate the constant in float equations. If this is
necessary use the presettings on floats.

Equations on floats can call up the « SQR » and « ABS » functions
Note: depending on the complexity the compiler may use intermediate
variables. These variables are the words m53 to m59 for 16 bit
integers, the longs 153 to 159 for 32 bit integers and the floats 53 a f59.

Examples and equivalencies with low level I|teraI language
M200=[10] lda

sta m200
M200=[m201] lda m201
sta m200
M200=[m201+100] lda m201
ada 100
sta m200
M200=[m200+m201-m202] lda m200
ada m201

" This character is normally associated to the [ALT] + [6] keys on keyboards

autoSIM® 301 ©Copyright 2011 SMC

O

SVC/ User manual

sba m202

sta m200
M200=[m200&$££00] lda m200
ana $ff00
sta m200
F200=[£201] lda £201
sta £200
F200=[£201+£202] lda f201
ada £202
sta £200
F200=[sqgr[£201]] lda £201
sqr aaa
sta £200
F200=[sqgr[abs[£f201*100R] 1] lda £201
mla 100R
abs aaa
sqr aaa

sta £200

L200=[1201+$12345678L] lda 1201
ada $12345678L
sta 1200

IF...THEN...ELSE...structure
General syntax:

IF (test)
THEN
action if true test
ENDIF
ELSE
action if false test

ENDIF

The test must comply with the syntax described in the chapter
dedicated to boolean equations.

Only if an action tests true or tests false can it appear.

It is possible to connect multiple structures of this type.

System bits u90 to u99 are used as temporary variables for managing
this type of structure.

Examples:
IF(i0)

THEN
inc m200 ; increments word 200 if i0

ENDIF

autoSIM® 302 ©Copyright 2011 SMC

O

svc/ User manual

IF(11+12)
THEN
m200=[m200+10] ; adds 10 to word 200 if the or i2
ENDIF
ELSE
res m200 ; else effect m200

ENDIF

WHILE ... ENDWHILE structure
General syntax:

WHILE (test)
action is repeated as long as the test is true

ENDWHILE

The test must comply with the syntax described in the chapter
dedicated to boolean equations.

It is possible to connect multiple structures of this type.

System bits u90 to u99 are used as temporary variables for managing
this type of structure.

Examples:
m200=[0]

WHILE (m200<10)
set 0(200)
inc m200 ; increments word 200

ENDWHILE

This example sets outputs 00 to 09 to one.

Example of a program in extended literal language
Let's go back to the example from the previous chapter

Solution:

0 _avl_=(1)

dvl=(1)(_tld_)

dv1l=(0) (_tli_)

Example\lit\extended literal 1.agn

Let's complicate our example with some calculations

Conditions:

Calculate the speed in millimeters per second and meters per hour of
the locomotive on the left to right trajectory.

autoSIM® 303 ©Copyright 2011 SMC

P
@SVC User manual

Solution:

dvl=(1)(_tld_)

dv1=(0) (_tli_)

— VY dvl } _temps aller_=[m32]
— N dvl | $_longueur_=300 ; en mm
$_mille_=1000;

$_dixdansh_=36000;
$_dix_=10;
temps mis=[m32-_temps aller_]

IF(_temps mis_<0)

THEN

temps mis=[_temps mis_+100]
ENDIF

lda _temps mis_
itf aaa

sta _dixieme_

vitesse mm par s=[_longueur_/[_dixieme_/_dix_]]

vitesse m par h=[[_longueur_/_mille_]/[_dixieme_/_dixdansh_]]

Example\lit\extended literal 2.agn

Word 32 is used to read the system time. The value is then transferred
to the float to effect the calculations without compromising exactness.

ST literal language

ST literal language is a structured literal language defined by IEC1131-
3 standard. This language is used to write boolean and numeric
equations as well as program structures.

General Information

ST literal language is used in the same way as low level literal
language and extended literal language.

autoSIM® 304 ©Copyright 2011 SMC

P
-“//I-SVD User manual

Commands are used to establish the sections in ST literal language
« #BEGIN_ST » indicates the beginning of an ST language section.
« #END_ST » indicates the end of an ST language section.

Example:

m200=[50] ; extended literal language
#BEGIN_ST

m201:=4; (* ST language *)

#END_ST

It is also possible to choose to use ST language for an entire sheet.
This selection is made in the properties dialogue box on each sheet.

On a sheet where ST language is the default language it is possible to
enter low level and extended literal language by using the commands
« #END_ST » and « #BEGIN_ST ».

Comments for ST language must start with « (* » and end with « *) ».

ST language instructions end with the character «;». Multiple
instructions can be written on the same line.

Example:
00:=1; m200:=m200+1;

Boolean equations

The general syntax is:

variable:= boolean equation;

Boolean equations can be composed of a constant, a variable or
multiple variables separated by operators.

Constants can be: 0, 1, FALSE or TRUE.

Examples:
00:=1;

ol:=FALSE;

The operators used to separate multiple variables are: + (or), . (and),
OR or AND.

« And » has priority over« Or ».

autoSIM® 305 ©Copyright 2011 SMC

P
-“//;SVC User manual

Example:

00:=10+11.12+13;

Will be treated as:

00:=10+(11.12)+13;

Parentheses can be used in the equations to indicate priorities.

Example:
00:=(10+11).(1i2+13);

Numeric tests can be used.

Example:
00:=m200>5.m200<100;

Numeric equations

The general syntax is:

variable:= numeric equation;

Numeric equations can be composed of a constant, a variable or
multiple variables separated by operators.

The constants can be expressed as decimal, hexadecimal (prefix #16)
or binary (prefix #2) values.

Examples:
m200:=1234;

m201:=16#aab55;
m202:=2#100000011101;

Operators are used to separate multiple variables or constants in their
order of priority.

* (multiplication),/ (division), + (addition), - (subtraction), & or AND
(binary and), XOR (binary exclusive or), OR (binary or).

Examples:
m200:=1000*m201;

m200:=m202-m204*m203; (* equivalent to m200:=m202-(m204*m203) *)

Parentheses can be used in the equations to indicate priority.

autoSIM® 306 ©Copyright 2011 SMC

% SNC

User manual

Example:
m200:=(m202-m204) *m203;

Programming structures

IF THEN ELSE test
Syntax:

IF condition THEN action ENDIF;

and

IF condition THEN action ELSE action ENDIF;

Example:
if 10
then 00:=TRUE;
else
00:=FALSE;
if 11 then m200:=4; endif;

endif ;

WHILE loop
Syntax:

WHILE condition DO action ENDWHILE;

Example:
while m200<1000

do
m200:=m200+1;

endwhile;

REPEAT UNTIL loop
Syntax:

REPEAT action UNTIL condition; ENDREPEAT;

Example:

repeat
m200:=m200+1;
until m200=500

endrepeat;

autoSIMP 307

©Copyright 2011 SMC

o
@SVC User manual

FOR TO loop
Syntax:

FOR variable:=start value TO end value DO action ENDFOR;

or

FOR variable:=start value TO end value BY no DO action ENDFOR;

Example:
for m200:=0 to 100 by 2

do
m201:=m202*m201;

endfor;

Exiting a loop
The key word « EXIT » is used to exit a loop.

Example:

while 10
m200:=m200+1;
if m200>1000 then exit; endif;

endwhile;

Example of a program in extended literal language
Let's go back to our example in the previous chapter

Solution:

0 _avl_:=TRUE;

if _tld_ then _dvl_:=TRUE; endif;

if _tli_ then _dvl_:=FALSE; endif;

Example\lit\ST literal 1.agn

Organization chart

AUTOSIM implements a « organization chart » type program.
Literal languages must be used with this type of program. See the
previous chapters to learn how to use these languages.

autoSIM® 308 ©Copyright 2011 SMC

P
‘—‘//I—-SVD User manual

The basis of programming with an organizational chart form is the
graphic representation of an algorithmic treatment.

Unlike Grafcet language, programming in the organizational chart form
generates a code which will be executed one time per search cycle.
This means that it is not possible to remain in an organizational chart
rectangle it is mandatory for the execution to exit the organizational
chart to continue to execute the rest of the program..

This is a very important point and must not be forgotten when this
language is selected.

Only rectangles can be drawn. The contents of a rectangle and its
connections determine if the rectangle is an action or a test.

Creating an organizational chart

The rectangles are drawn by selecting the command « Add ... / Code
box» from the menu (click on the right side of the mouse on the bottom
of the sheet to open the menu).

It is necessary to place a block l (key [<]) at the entry of each
rectangle, this must be placed on the upper part of the rectangle.
If the rectangle is an action it will have only one exit represented by a

block (key [E]) on the lower left side of the rectangle.

An action rectangle:

If the rectangle is a test it must have two outputs. The first is
represented by a block. | (key [E]) on the lower Ielft side and is for

a true test, the second represented by a block 7 (key [=]) is
immediately to the right of the other output and is for a false test.

autoSIM® 309 ©Copyright 2011 SMC

P
'—@SVC User manual

A test rectangle:

The branches of the organizational chart must always end with a
rectangle without an output that could remain empty.

Rectangle content

Action rectangle content
Action rectangles can contain any kind of literal language instructions.

Test rectangle content

Test rectangles must contain a test that complies with the test syntax
of the IF...THEN...ELSE... type structure of extended literal language.
For example:

IF (1i0)

It is possible to write actions before this test in the test rectangle.

This can be used to make certain calculations before the test

For example, if we want to test if the word 200 is equal to the word 201
plus 4:

m202=[m201+4]
IF (m200=m202)

lllustration

Our first, now typical, example is to make a locomotive make round
trips on track 1 of the model.

autoSIM® 310 ©Copyright 2011 SMC

User manual

if(_tld_)

set _dvl_

if(_tli_)

Example\ Ornagization chart\ Ornagization chart 1.agn

Second example
Conditions:

Make all the model light flash. The light change states every second.

autoSIM®

311

©Copyright 2011 SMC

o
-‘-//’-SVC User manual

index%$m=[7?_s1d_]

inv o(_index%m_) and tO0

inc _index%$m_

calcul%m=[?_s81i_+1]
IF(_index%$m_=_calcul%m_)

Example\ Ornagization chart\ Ornagization chart 2.agn

Note the use of automatic symbols in this example.

autoSIMP 312 ©Copyright 2011 SMC

r
"-//;SVC User manual
Function blocks

AUTOSIM implements the use of function blocks.

This modular programming method is used to associate a set of
instructions written in literal language to a graphic element .

Function blocks are defined by the programmer. Their number is not
limited. It is possible to create sets of function blocks to allow a
modular and standardize concept of applications.

Function blocks are used within flow chart or ladder type models, they
have n boolean inputs and n boolean outputs. If the block is going to
treat variables which are not boolean, then they will be mentioned in
the drawing of the function block. The inside of the block can receive
parameters: constant or variable.

Hnom du bloc h

—| (parametres] —

Block boolean L Block boolean

ipputs Block outputs
(maximum 16) parameters (maximum 16)

(maximum 16)

Creating a function block

A function block is composed of two separate files. One file has
« .ZON » extension which contains the drawing of the function block
and a file with «.LIB» extension which contains a series of
instructions written in literal language which establish the functionality
of the function block.

The «.ZON » and « .LIB » files must bear the name of the function
block. For example, if we decide to create a function block
« MEMORY », we need to create the files « MEMORY.ZON » (to draw
the block) and « MEMORY.LIB » (for the functionality of the block).

Drawing a block and creating a « .ZON » file

The envelop of a function block is composed of a code box to which
blocks dedicated for the function block are added.
To draw a function block follow the steps below:

= use the assistant (recommended)

autoSIM® 313 ©Copyright 2011 SMC

O

svc/ User manual

Or:

= draw a code box (use the command « Add .../Code box » from the menu):

= place a blockr (key [8]) on the upper right corner of the code box:
_|

= place a block .ﬂ (key [9]) on the upper right corner of the code box:
A b

= delete the line at the top of the block (key [A] is used to place blank blocks):
A b

= click with the left side of the mouse on the upper left corner of the functional
block, then enter the name of the functional block which must not be more than
8 characters (the « .ZON » and « .LIB » files must bear this name), then press
[ENTER].

autoSIMP 314 ©Copyright 2011 SMC

N
2

User manual

H TEST .

= if additional boolean inputs are necessary, a block must be used " (key [;])

or u— (key []), the added inputs must be located right below the first input, no

free space should be left,
= if additional boolean outputs are needed a block must be added ” (key [>])

or | (key [?]), the added outputs must be located right below the first

output, no free space should be left,

= the interior of the block can contain comments or parameters, the parameters
are written between braces « {...} ». Everything not written between braces is
ignored by the compiler. It is interesting to indicate the use of boolean inputs

and outputs inside the block.

= when the block is finished, the command « Select » must be used from the
« Edit » menu to select the drawing of the functional block, then save it in the

« .ZON » file with the « Copy to» command from the « Edit » menu.

Creating an « .LIB » file

The « .LIB » file is a text file containing instructions in literal language
(low level or extended). These instructions establish the functionality of
the function block.

A special syntax is used to refer to block boolean inputs, block boolean
outputs and block parameters.

To refer to a block boolean input, use the syntax« {Ix} » where x is the
number of the boolean input expressed in hexadecimal (0 to f).

To refer to a block boolean output, use the syntax« {Ox} » where x is
the number of the boolean output expressed in hexadecimal (0 to f).
To refer to a block parameter use the syntax « {?x} » where x is the
number of the parameter in hexadecimal (0 to f).

The .LIB can be placed in the « lib » sub-directory of the AUTOSIM
installation directory or in the project resources.

autoSIM® 315 ©Copyright 2011 SMC

o
‘—‘//I—-SVD User manual

Simple example of a function block

We are going to create a « MEMORY » function block which contains
two boolean inputs (set to one and reset) and a boolean output
(memory state).

The block drawing contained in the « MEMORY.ZON » file is:

MEMOIRE
@

Block functionality contained in the « MEMORY.LIB » file is:

{00}=(1) ({10})
{00}=(0) ({I1})

The block can then be used in the following way:

7 _[iveroIRE §‘|—H'3'4 |
g 8

or

MEMOIRE
s —1 é?

i [og 1
— i6 F—#&

To use a function block in an application, select the command «Paste
from » from the «Edit» menu and select the «.ZON» file
corresponding to the function block used.

lllustration

Let's go back to our typical example.

Conditions:

Round trip of a locomotive on track 1 of the model.

Solution:
| ALLERRET -
— tld | capteur droit alimentation AV1
— tli } capteur gauche direction DV1

BF aller/retour

Example\fb\fb 1.agn

: bloc fonctionnel ALLERRET
: aller retour d’une locomotive sur une voie

autoSIM® 316 ©Copyright 2011 SMC

P
-“//I-SVD User manual

: les entrées booléennes sont les fins de course
; les sorties booléennes sont I'alimentation de la voie (0) et la direction

(1)

; toujours alimenter la voie
set {O0}

; piloter la direction en fonction des fins de course

{O1}=(1)({l0})
{O1}=(0)({l1})

To illustrate the use of function blocks, let's complete our example.
Conditions:
Round trip of two locomotives on tracks 1 and 3.

Solution:
‘ | ALLERRET -
— tld } capteur droit alimentation AV1
— tli } capteur gauche direction DV1
BF aller/retour
| ALLERRET 3
— t3d } capteur droit alimentation AV3
— t3i } capteur gauche direction N DV3

BF aller/retour

Example\ fb\fb 2.agn

This example shows that with the same function block it is easy to
make different modules of an operative party function in the identical
manner.

Let's complete our example to illustrate the use of parameters
Conditions:

The two locomotives must make a delay at the end of the track. For
locomotive 1: 10 seconds on the right and 4 seconds on the left, for
locomotive 2: 20 seconds on the right and 8 seconds on the left.

autoSIMP 317 ©Copyright 2011 SMC

% SNC

User manual

Solution:

— | t3d

capteur droit alimentation

capteur gauche direction

temporisation 1 {t0}

attente a droite : {100}

temporisation 2 {tl}
attente a gauche : {40}

BF aller/retour avec attente

DV1

ARATT
capteur droit alimentation

capteur gauche direction

temporisation 1 {t2}

attente a droite : {200}

temporisation 2 {t3}
attente a gauche : {80}

BF aller/retour avec attente

AV3

N DV3

autoSIM®

318

©Copyright 2011 SMC

O

svc/ User manual

; bloc fonctionnel ARATT
; aller retour d'une locomotive sur une voie avec attente
; les entrées booléennes sont les fins de course
; les sorties booléennes sont l'alimentation de la voie (0) et la
direction (1)
; les paramétres sont:
0: premiere temporisation
; 1: durée de la premieére temporisation
; 2: deuxieme temporisation
; 3: durée de la deuxiéeme temporisation

4

; prédisposition des deux temporisations
${20}={21}
${22}={23}

; alimenter la voie si pas les fins de course ou si tempo. terminées
set {00}

res {00} orr {I0} eor {Il}

set {00} orr {20} eor {22}

; gestion des temporisations
{20}=({1I0})
{?2}=({I1})

; pliloter la direction en fonction des fins de course
{01}=(1) ({I0})
{O01}=(0) ({I1})

Example\ fb\fb 3.agn

Supplementary syntax

Supplementary syntax is used to make a calculation on the reference
variable numbers in the « .LIB » file.

The syntax « ~+n» added after a reference to a variable or a
parameter, adds n.

The syntax « ~-n» added after a reference to a variable or a
parameter subtracts n.

The syntax « ~*n » added after a reference to a variable or parameter,
multiplies by n.

It is possible to write many of these commands, one after the other,
they are evaluated from left to right.

This mechanism is useful when a function block parameter needs to
be used to refer to a table of variables.

Examples:

{?0}~+1

referring to the following element the first parameter, for example if the
first parameter is m200 this syntax refers to m201.

M{?2}~*100~+200

referring to the third parameter multiplied by 100 plus 200, for example
if the third parameter is 1 that syntax refers to M 1*100 + 200 thus
M300.

autoSIM® 319 ©Copyright 2011 SMC

r
"-//;SVC User manual
Evolved function blocks

This functionality is used to create very powerful function blocks with
greater ease than the function blocks managed by files written in literal
language. This programming method uses a functional analysis
approach.

It does not matter which sheet or set of sheets become a function
block (sometimes called encapsulating a program).

The sheet or sheet which describe the functionality of a function block
can access variables which are outside the function block: block
boolean inputs, boolean outputs and parameters.

Principles for use and more importantly the use of external variables is
identical to the old function blocks.

Syntax

To refer a variable outside a function block it is necessary to use a
mnemonic included in the following text: {In} to refer the boolean input
n, {On} to refer the boolean output n, {?n} to refer parameter n. The
mnemonic must start with a letter.

Differentiating between new and old function blocks

The file name written on the function block drawing indicates if it is an
old (managed by an LIB file) or new function block (managed by a
GR7 sheet). The name of an old function block does not have an
extension, for a new one the extension GR 7 must be added. The
sheet containing the code which manages the functionality of the
function block must be entered in the list of project sheets. In the sheet
properties « Function Block » must be selected.

autoSIM® 320 ©Copyright 2011 SMC

ZS\NC

User manual

Example

Contents of VERINB sheet:

BF vérin bistable

— cde ouverture{iO} . ouvert {12} — cde fermeture{il} . ferme {137} . cde ouverture{10}
20 H OUVRIR{OO0} | 30 H FERMER{O1}
—— ouver t{i2} — ferme{i3}

T

e duree{?0} /x40/ tempo{?1}

Call up a function block

| VERTNB.GR7 -
——jul00 | CDE 0O 5

00

——uilo1 | CDE F F 01

— 0 | F

Durée
{10s}

Temporisation
{TO}

VERIN BISTABLE

Example\fb\Fb with sfc inside.agn

Predefined function blocks

Conversion function blocks are located in the sub-directory « \LIB » of
the directory where AUTOSIM is installed.
The equivalents in macro-instructions are also present.

autoSIM® 321 ©Copyright 2011 SMC

r
"-//;SVC User manual

To insert a function blocks and its parameters in an application select
« Pre-set function block » from the « Assistant / Function block» dialog
box.

Conversion blocks

ASCTOBIN: converts ASCII to binary

BCDTOBIN: converts BCD to binary

BINTOASC: converts binary to ASCII

BINTOBCD: converts binary to BCD

GRAYTOB: converts gray code to binary

16BINTOM: transfers 16 boolean variables to a word
MTO16 BIN: transfers a word to 16 boolean variables

Time delay blocks

TEMPO: upstream time delay
PULSOR: parallel output
PULSE: time delay pulse

String blocks

STRCMP: comparison
STRCAT: concatenation
STRCPY: copy

STRLEN: calculate the length
STRUPR: set in lower case
STRLWR: set in upper case

Word table blocks

COMP: comparison
COPY: copy
FILL: fill

Advanced techniques

Compiler generated code

This chapter deal with the form of code generated by compilation of
such or that type of program.

The utility « CODELIST.EXE » is used to translate « in clear » a file of
intermediate code « .EQU » (also called pivot language).

We are going to do the following: load and compile the first
programming example in the « Grafcet » chapter: « simple1.agn » from
the directory « Example\grafcet »:

autoSIMP 322 ©Copyright 2011 SMC

N
2

User manual

0 H AV1

1 H AVl , DV1

Double click on « Generated files/Pivot code » in the browser.
You will obtain the following list of instructions:

:00000000: RES xO0 AND 10

:00000002: SET xO0 AND DbO

:00000004: SET x0 AND x1 AND il

:00000007: RES x1 AND il

:00000009: SET x1 AND x0 AND iO

; Le code qui suit a été généré par la compilation
de: 'affectations (actions Grafcet, logigrammes et
ladder) '

:0000000C: EQU o0 ORR @x0 EOR @x1

:0000000F: EQU 023 AND @x1

This represents the translation of a « simplel.agn » application into
low level literal language

The comments indicate where the portions of code came from, this is
useful if an application is composed of multiple sheets.

Obtaining this list of instructions may be useful for answering
questions regarding code generated for some program form or the use
of some language.

In certain cases « critiques », for which it is important to know
information such as « how many cycles does it take before this action
becomes true ? » a step by step way and an in-depth examination of
generated code will prove to be indispensable.

Optimizing generated code
Various levels of optimization are possible.

Optimizing compiler generated code

The compiler optimization option is used to greatly reduce the size of
generated code. This command requires that the compiler manage
fewer lines of low level literal language, consequently increasing
compiling time.

autoSIM® 323 ©Copyright 2011 SMC

o
‘—‘//I-SVD User manual

Depending on the post-processors used, this option involves an
improvement in the size of the code and/or the execution time. It is
advisable to carry out some tests to determine if this command is of
interest or not depending on the nature of the program and the type of
target used.

Normally, it is useful with post-processors for Z targets.

Optimizing post-processor generated code

Each post-processor may possess options for optimizing generated
code. For post-processors which generate construction code, see the
corresponding information.

Optimizing cycle time: reducing the number of time delays on Z
targets

For Z targets, the number of stated time delays directly affects the
cycle time. Try to state the minimum time delays based on the
application requirements.

Optimizing cycle time: canceling scanning of certain parts of the
program

Only targets which accept JSR and RET instruction support this
technique.

Special compilation commands are used to validate or « invalidate »
scanning of certain parts of the program.

They are the sheets which define the portions of applications.

If an application is broken down into four sheets than each one can be
separately « validated » or « invalidate ».

A command « #C(condition) » placed on the sheet conditions the
searching of the sheet up to a sheet containing a « #R » command.

This condition must use the syntax established for the tests.
Example:

If a sheet contains the two commands:
#C (m200=4)

#R

Then everything that it contains will not be executed except word 200
containing 4.

autoSIMP 324 ©Copyright 2011 SMC

SVC‘ User

Examples

Regarding examples

This part contains a series of examples providing an illustration of the
different programming possibilities offered by AUTOSIM.

All of these examples are located in the « example » sub-directory in
the directory where AUTOSIM is installed.

This section contains the most complete and complex examples
developed for a train model. The description of this model is located at
the beginning of the language reference manual.

Simple grafcet
The first example is a simple line Grafcet

110 HTO(100)

Example\grafcet\sample1.agn

= the transition in step 100 and step 110 is made up of a test on input 0,

= step 110 activates the time delay 0 for a duration of 10 seconds, this time

delay is used as a transition between step 110 and step 120,
= step 120 activates outputs 0, 1 and 2,

= the complement of input 0 will be the transition between step 120 and
100.

autoSIM® 325 ©Copyright 2011 SMC

User

5

Grafcet with an OR divergence

Example\grafcet\sample2.agn

This example shows the use of « Or » divergences and convergences.
The number of branches is not limited by the size of the sheet. It is a
non-exclusive « Or » by standard. For example, if inputs 1 and 2 are

active, then steps 120 and 130 will be set to one.

autoSIMP 326

©Copyright 2011 SMC

User

5

Grafcet with an AND divergence

110 HOO 130 HO1 160 HSO2 190 HO3

120 140 170 HO4

150 HO5 180 HRO2

Example\grafcet\sample3.agn

This example shows the use of «And» divergences and
convergences. The number of branches is not limited by the size of the
sheet.. Also note the following points

= a step may not lead to an action (case of steps 100, 120, and 140),
= orders « S » and « R » were used with output 02 (steps 160 and 180),

= the transition between step 160 and 170 is left blank, so it is always true,

the syntax « =1 » could also have been used.

autoSIMP 327 ©Copyright 2011 SMC

SVD* User

manual

O

Grafcet and synchronization

4 io -+ x1

i10 ’—illl

T

— 110 —+ i1 i11

|

¢

il2

]

¢

i13

]

¢

Example\grafcet\sample4.agn

This example shows the possibilities AUTOSIM offers for
synchronizing multiple Grafcets. The transition between step 100 and
110 « Ax1 » means « wait for a rising edge on 1». The
transition« ¥x110 » means « wait for a falling edge on step 110 ». The
step by step execution of this program shows the exact evolution of
the variables and their front at each cycle. This makes it possible to
understand exactly what happens during the execution. We can also
see the use of multiple actions associated to step 110, which are
individually conditioned here.

autoSIM® 328 ©Copyright 2011 SMC

User

2

Step setting

10 HRCO

20 HSX100

—1— x120

Example\grafcet\sample5.agn

100

’—/ri 4

110

H+CO

120

JF

il

In this example an order « S » (set to one) has been used to set a
step. AUTOSIM also authorizes setting of a Grafcet integer (see
examples 8 and 9). Again in this example, the step by step execution
lets us understand the exact evolution of the program over time. We

can also see:

= use of an non-looped Grafcet (100, 110, 120),

= use of the order « RCO » (reset by counter 0),

= use of the order « +C0 » (incremented by counter 0),conditioned by the

rising edge of input 4, due to incrementation by the counter, so it is

necessary that step 100 be active and that a rising edge is detected on input

4.

autoSIM®

329

©Copyright 2011 SMC

o
-“//;SVC User
manual

Destination and source steps

L po.il

4 o

Example\grafcet\sample6.agn

We have already seen similar forms, where the first step is activated
by another Grafcet. Here activation of step 100 is realized by the
transition « ANIO . i1 » (rising edge of input 0 and input 1). This example
represents a shift register. « i1 » is information to memorize in the
register and «i0 » is the clock which makes the shift progress.
Example 7 is a variation which uses a time delay as a clock.

autoSIM® 330 ©Copyright 2011 SMC

P
-“//I-SVD User
manual

Destination and source steps

—1— At0.il

| 2o

—_1— M0

g

—1 Ato ’_

130 HO3 1000|HTO(10)

—+ Ao

Example\grafcet\sample7.agn

Here again is the structure of the shift register used in example 6. This
time the shift information is generated by a time delay (10). « AMO »
represent the rising edge of the time delay, this information is true
during a cycle when the time delay has finished. Step 1000 manages
the launch of the time delay. The action of this step can be summed up
as: « activate the count if it is not finished, otherwise reset the time
delay». The functionality diagram of the time delays of this manual will
help you to understand the functionality of this program.

autoSIM® 331 ©Copyright 2011 SMC

User

5

Setting Grafcets

arret urgence

F100:{}

arret urgence

F100:{100}

Example\grafcet\sample8.agn

100 |H VOYANT INIT
—— N bp depart de cycle
110 H MOTEUR

bp fin de cycle

This example illustrates the use of a Grafcet set command. The order
« F100:{} » means « reset all the Grafcet steps where one of the steps
bears the number 100 ». Order « F100:{100} » is identical but sets
step 100 to 1. We have used symbols for this example:

arret urgence

i0

bp depart de cycle

i1

bp fin de cycle

i2

VOYANT INIT

oD

MOTEUR

o1

autoSIM®

332

©Copyright 2011 SMC

SVD, User

Memorizing Grafcets

#B200

o

=

o

o
I

VOYANT INIT

—_ arret urgence —— M bp depart de cycle

G100:100 110 MOTEUR

—
|

— — bp fin de cycle

2 HF100: ()

-1 arret urgence

3 HE100:100

Example\grafcet\sample9.agn

arret urgence i0
bp depart de cycle i1
bp fin de cycle i2
VOYANT INIT o0
MOTEUR o1

This example is a variation of the previous program. The order
« G100:100 » of step 1 memorizes the Grafcet production state before
it is reset. When it starts again the production Grafcet will be put back
in the state or the state it was in before the break, with order
« F100:100 ». The Grafcet production state is memorized starting from
bit 100 (this is the second parameter of orders « F » and « G » which
indicates this site), command « #B200 » reserves bits u100 to u199 for
this type of use. We can see that a « #B102 » command would have
been sufficient here because the production Grafcet only needed two
bits to be memorized (one bit per step).

autoSIM® 333 ©Copyright 2011 SMC

User

5

Grafcet and macro-steps

10 HSO10
—| 110
20 HRO10

Example\grafcet\sample11.agn

This example illustrate the use of macro-steps. The «Macro-step 1 »
and « Macro-step 3 » sheets represent the expansion of macro-steps

autoSIM® 334 ©Copyright 2011 SMC

gvc* User

with the input and output steps. Steps 1 and 3 of the «Main program »
sheet are defined as macro-steps. Access to macro-step expansion
display can be done by clicking the left side of the mouse on the
macro-steps.

Linked sheets

0 H 00

—— 10

1 HO1

— i1

2 H02

— i2

3 H SUITE
_ continue

autoSIM® 335 ©Copyright 2011 SMC

N
2

manual

4 03

—_ suite

5 04

— i3

6 o5

—— id4

7 | CONTINUE

Example\grafcet\sample12.agn

In this example two sheets have been used to write a program. The
symbols « NEXT_» and « _CONTINUE_ » have been stated as bits
(see the symbol file) and are used to make a link between the two
Grafcets (this is another synchronization technique that can be used
with AUTOSIM).

autoSIM® 336 ©Copyright 2011 SMC

P
-‘-//I-_SVC User
manual

- Jio | o (> 00

Example\logigramme\samplei4.agn

The flow chart example shows the use of different blocks: the
assignment block associated to key [0] to the left of the action
rectangle the « no » block associated with key [1] which complements
a signal and the test fixing blocks and « And» and « Or » functions.

autoSIM® 337 ©Copyright 2011 SMC

User

5

Grafcet and Flow Chart

—— AN bp depart de cycle

e fin de cycle

bp manuel } | MOTEUR

étape 1 } & —

sécurité 1 ——— b

L]

sécutité 2 — o

Example\logigramme\exempl15.agn

In this example a Grafcet and a Flow Chart are used together. The
symbol « step1_» used in the flow chart is associated to variable
<« X1 » .,
This type of programming clearly displays activation conditions of an
output.

autoSIM® 338 ©Copyright 2011 SMC

2

User
Literal language box
0 HSOO0
1
m200=[0] ; m200 est utilisé comme index
res _flag une entrée est a un_
WHILE(_flag une entrée est a un_.m200<100)
IF(1(200))
THEN
set _flag une entrée est a un_
ENDIF
inc m200
ENDWHILE
_ flag une entrée est a un _ flag une entrée est a u
2 HROO

Example\lit\sample16.agn

This program which associates Grafcet and literal language box is for
testing inputs i0 to i99. If one of the inputs is at one, then step 2 is
active and the Grafcet is in a state where all evolution is prohibited.
The symbol. « _flag an input is at one_ » is associated to bit u500. An
indexed addressing is used to scan the 100 inputs. We can also see
the simultaneous use of low level and extended literal language.

autoSIM® 339 ©Copyright 2011 SMC

User

5

Organizational chart

IF(_bp validation_)

Y%

bta _entrée roue codeuse_
ana %0000000000000111
sta _valeur roue codeuse_

Example\organigramme\sample18.agn

; fin

This example shows the use of an organizational chart for effecting an
algorithmic and numeric treatment. Here three inputs from a code
wheel is read and stored in a word if a validation input is active.

autoSIM®

340

©Copyright 2011 SMC

User

5

Organizational chart

m200=[10]

\Y%

0(200)=(1)
m200=[m200+1]
IF(m200=30)

T

; Fin de 1la
; boucle

Example\organigramme\sample19.agn
This second example of an organizational chart creates a loop

structure which is used to set a series of outputs (010 to 029) with an
indirect addressing(« 0(200) »).

autoSIMP 341 ©Copyright 2011 SMC

O

SMC

User
manual
Function block
— il6 } ROO
—]i17 } & 500
| COMPTAGE | _
—11i0 } 1.A.Z. H
— i1 } COMPTAGE
VAL. INIT
{100}
BORNE MAX
{110}
VARIABLE
{m200}

Example\bf\sample20.agn

; Gestion de l'entrée de RAZ
IF({IO0})

THEN

{?2}=[{20}]

ENDIF

©; Gestion de l'entrée de comptage

IF (#{TI1})
THEN
{?2}=[{?2}+1]
ENDIF

; Teste la borne maxi

CIF({?2}={21})
THEN
{00}=(1)
{22}=[{20}]
ENDIF
ELSE
{00}=(0)
ENDIF

count lib (included in project resources)

autoSIMP 342

©Copyright 2011 SMC

SVD* User

This example illustrates the use of a function block. The functions of
the« COUNT » block that we have defined here are as follows:

= the count will start from an init value and will finish at a maximum limit

value

= while the count value waits for the maximum limit it will be set the initial

value and the block output will pass to one during a program cycle.,

=> the block will have a RAZ boolean input and a count input on the rising

edge.

Function block

OU_EXCLU | _ | OU_EXCLU |__
0 | i h L h
=1 =1
— il I
| OU_EXCLU
—i2 I
=1
— i3 I
OU_EXCLU OU_EXCLU
. , M b m H
— i4 , H— 00
=1 =1
— 15 I

Example\bf\sample21.agn

; Ou exclusif
neq {00} orr /{i0} eor {i1} orr {i0} eor /i1}

ou_exclu.lib (included in the project resources)

This second example of a function block shows the multiple use of the
same block. The « EXCLUSIVE_OR » block creates an exclusive or
between the two boolean inputs This example uses 5 blocks to create
an exclusive or among 6 inputs (i0 a i5). The « EXCLUSIVE_OR.LIB »
listed below supports the functionality of the block. The exclusive or
boolean equation is as follows: « (i0./i1)+(/i0.i1) ».

The equivalent form used here makes it possible to code the equation
on a single line of low level literal language without using intermediate
variables.

autoSIM® 343 ©Copyright 2011 SMC

o
'—‘//I-SVC User
manual

143 : 1110 p————<01 o
I | 111 p—————<02 D>——

is | |i12 p——03 >
1 is6 | | 113 p————<C04 >

Example\laddersample22.agn

This example illustrates the use of ladder programming.

autoSIMP 344 ©Copyright 2011 SMC

